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Abstract. Detection of Alzheimer's disease over brain Magnetic Res-
onance Imaging (MRI) data is a priority goal in the Neurosciences. In
previous works we have studied the accuracy of feature vectors obtained
from VBM studies of the MRI data. In this paper we report results
working on deformation based features, obtained from the deformation
vectors computed by non-linear registration processes. Feature selection
is based on the correlation between the scalar values computed from the
deformation maps and the control variable. Results with linear kernel
SVM reach accuracies comparable to previous best results.

1 Introduction

Alzheimer's disease (AD) is a neurodegenerative disorder, which is one of the
most common cause of dementia in old people. Currently, due to the socioe-
conomic importance of the disease in occidental countries it is one of the most
studied. The diagnosis of AD can be done after the exclusion of other forms of de-
mentia but a de�nitive diagnosis can only be made after a post-mortem study of
the brain tissue. This is one of the reasons why early diagnosis based on Magnetic
Resonance Imaging (MRI) is a current research hot topic in Neuroscience. One
of the current lines of research involves the application of machine learning algo-
rithms to features extracted from brain MRI. We have already explored the ap-
plication of various machine learning and computational intelligence algorithms
to AD prediction [7,15,1,2]. Speci�cally we have performed these computational
experiments on a subset of the Open Access Series of Imaging Studies (OASIS)
database [12]. These works involved the use of Voxel-based Morphometry (VBM)
[3] to select the Gray Matter (GM) voxels that would serve as discriminant fea-
tures. We have made public the set of extracted features in order to allow for
independent experimentation upon them [8].

Morphometry analysis has become a common tool for computational brain
anatomy studies. It allows a comprehensive measurement of structural di�erences
within a group or across groups, not just in speci�c structures, but throughout
the entire brain. In this paper we use Deformation-based Morphometry (DBM)
[10,16] and Tensor-based Morphometry (TBM) [5,11] to guide the feature ex-
traction process. These morphometry methods analyze displacement vectors re-
sulting from non-linear registration procedures with high number of degrees of
freedom.



A similar study [14] with 50 subjects obtained 92% of accuracy when dis-
criminating AD subjects from healthy controls using features extracted from
displacement �elds and di�erent classi�cation methods with SVM, Bayes statis-
tics, and voting feature intervals (VFI). In addition, another study [16] obtained
83% of accuracy using similar approaches to detect subjects with mild cognitive
impairment. Although their results can not be reproduced, this work con�rms
that the approach that we follow is a promising area of research.

In this experiment we obtain scalar measures of the voxel displacements and
afterwards compute their correlation with the control variable, which indicates
if the sample corresponds to a control subject or an AD patient. The voxel sites
with high correlation are selected for the extraction of the feature vector values.
We report the results of Support Vector Machine (SVM) with linear kernels
performing the classi�cation task.

Section Materials and Methods gives a description of the subjects selected
for the study, the image processing, feature extraction details and the classi�er
system. Section Results gives our classi�cation performance results and section
Conclusions gives the conclusions of this work and further research suggestions.

2 Materials and Methods

A database of ninety eight women extracted from the freely available OA-
SIS database were used in this AD detection experiment. The demographic
and imaging details of the sample can be found elsewhere [8,15]. The imple-
mentation of the SVM used for this study is included in the libSVM (http:
//www.csie.ntu.edu.tw/~cjlin/libsvm/) software package and described in
detail in [6]. The feature extraction step requires the data to be spatially normal-
ized. The subjects in the database were already linearly registered to a MNI152
template[12]. Taking into account that, we need to non linearly transform them
to a common template in order to obtain the deformation �elds which will be
used as starting point in the feature extraction process. For this non-linear reg-
istration step we could have used again the MNI152 standard template, but the
registration algorithm used in this study [4] could not cope well with the large
deformations required to register some subjects with enlarged ventricles. For this
reason, a custom brain template volume was created with all the subjects in the
database. This custom template was subsequently non linearly registered to all
the study subjects. As a result from the non linear registration, displacement
vectors for each subject are obtained. These displacement vector �elds describe
the e�ects of deformation of the template brain to the subject's. For each voxel
i, the displacement �eld for one subject have a vector (xi, yi, zi) representing the
ending point of voxel i in the registration process.

Two measures have been extracted from the displacement vectors (see Fig.
1):

1. The displacement vector magnitudes, denoted DM in the results section

DMi =
√
x2i + y2i + z2i , (1)

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/


2. The Jacobian determinant of the displacement �eld gradient matrices, de-
noted JD in the results section

Ji =

 ∂(x−ux)/∂x ∂(x−ux)/∂y ∂(x−ux)/∂z
∂(y−uy)/∂x ∂(y−uy)/∂y ∂(y−uy)/∂z
∂(z−uz)/∂x ∂(z−uz)/∂y ∂(z−uz)/∂z

 . (2)

The Jacobian matrix in this case describes the velocity of the deformation pro-
cedure in the neighboring area of each voxel. To calculate this matrix, for each
voxel site, we used the central di�erence using two adjacent voxels in one dimen-
sion. The determinant of the Jacobian matrix Ji is commonly used to analyze the
distortion necessary to deform the images into agreement. A value det (Ji) > 1
implies that the neighborhood adjacent to the displacement vector in voxel i
was stretched to match the template (i.e., local volumetric expansion), while
det (Ji) < 1 is associated with local shrinkage.

Much of the information about the shape change is lost using these measures,
nevertheless a more complex multivariate approach would have to be performed
in order to use all the information in the deformation gradient matrices or the

Green strain tensors de�ned as Si =
(
JT
i Ji

)1/2
[11]. Once the DM and JD maps

were calculated, signi�cant voxels were selected from a correlation measure of
the voxels to the class labels of each subject. All the registration procedures in
this study were performed using ANTS (http://www.picsl.upenn.edu/ANTS).

Fig. 1. Pipeline of the image pre-processing steps.

The feature values were extracted from the scalar DM and JD maps com-
puted on the displacement vectors resulting from the registration processes, as
described in �gure 1. For each voxel site i we extracted one vector vi with n
components being the value of the voxel i of each one of the n subjects of this
experiment. Afterwards correlation measures of these vectors with the control

http://www.picsl.upenn.edu/ANTS


variable, speci�ed by the vector containing the subject class label (-1 for con-
trol subject or 1 for patient) were performed. Pearson and Spearman correlation
were used in this study. Volume masks containing the voxel sites whose corre-
lation values where above some speci�ed percentile (i.e. 0.990, 0.995) for each
combination of map and correlation measure were applied to the corresponding
DM or JD map to extract the feature vectors. Figure 2 illustrates the process.
Features were normalized before training the SVM on them.

Fig. 2. Pipeline of the calculation of the correlation volumes.

2.1 Pearson's correlation

The Pearson's product-moment correlation coe�cient [9] (PMCC or typically
denoted by r) is a measure of the correlation (linear dependence) between two
variables X and Y , giving a value between +1 and −1 inclusive. It is widely used
in the sciences as a measure of the strength of linear dependence between two
variables. It was developed by Karl Pearson from a similar but slightly di�erent
idea introduced by Francis Galton in the 1880s. The correlation coe�cient is
sometimes called "Pearson's r."

Pearson's correlation coe�cient between two variables is de�ned as the co-
variance of the two variables divided by the product of their standard deviations:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
, (3)

where X̄ andȲ are the mean of the variables X and Y respectively.

2.2 Spearman's correlation

The Spearman's correlation coe�cient is often thought of as being the Pear-
son's correlation coe�cient between the ranked variables. In practice, however,



a simpler procedure is normally used to calculate ρ. The n raw scores Xi, Yi are
converted to ranks xi, yi and the di�erences di = xi − yi between the ranks of
each observation on the two variables are calculated.

If there are no tied ranks, then ρ is given by [13]:

ρ = 1 − 6
∑
d2i

n(n2 − 1)
(4)

If tied ranks exist, Pearson's correlation coe�cient between ranks should be
used for the calculation 3. One has to assign the same rank to each of the equal
values. It is an average of their positions in the ascending order of the values.

3 Results

Classi�ers performance was measured with the architecture strategies mentioned
before using a 10-fold cross-validation methodology. In this section the following
data for each experiment is presented: the number of features extracted from
each subject, classi�cation accuracy, sensitivity, which is related to AD patients
and speci�city, which is related to control subjects. The results shown are the
mean and standard deviation (stdev) values of the classi�cation results from the
cross-validation process. In this paper we report the results of the linear kernel
SVM. Each of the tables contain the results of using all the selected voxel sites
with correlation value above the selected percentile (top row), and the results
selecting a �xed number of voxel sites in descending order of correlation value.
The objective is to see if the feature vector size reduction based only on the
correlation magnitude is an e�cient feature selection method.

The results of the features extracted on the basis of the Spearman's correla-
tion are systematically worse the results obtained by the SVM on the features
selected from the VBM analysis [15]. These results are in tables 1, 2 and 3. Re-
sults performing the feature extraction on the DM map with the 0.995 percentile
(table 1) improve over the 0.999 percentile (table 2), reaching values close to the
reference values. The application of the process to the JD map (table 3) does
not improve the results.

The results of the feature vectors extracted on the basis of the Pearson's
correlation improve on the results of the Spearman's correlation selection. These
results are in tables 4 and 5. The results on the DM map (table 4) are comparable
to the reference results in [15]. Note that the use of the full feature vector give
the same result as the reduced vector of 250 voxel sites, suggesting that a strong
feature vector size reduction can be achieved. Results on the JD map (table 5)
are worse than the DM results.



#Features Accuracy Sensitivity Speci�city

12229 0.76 (0.15) 0.77 (0.28) 0.75 (0.17)

2000 0.79 (0.14) 0.82 (0.12) 0.75 (0.20)

1000 0.79 (0.10) 0.87 (0.13) 0.70 (0.16)

500 0.77 (0.13) 0.87 (0.17) 0.67 (0.20)

250 0.79 (0.10) 0.90 (0.13) 0.67 (0.17)
Table 1. Results using linear SVM on DM features obtained from the 0.995 percentile
of the Spearman correlation.

#Features Accuracy Sensitivity Speci�city

1861 0.66 (0.14) 0.70 (0.20) 0.62 (0.21)

1000 0.66 (0.14) 0.77 (0.18) 0.55 (0.20)

500 0.71 (0.12) 0.85 (0.17) 0.57 (0.17)

250 0.72 (0.15) 0.80 (0.11) 0.65 (0.29)
Table 2. Results using linear SVM on DM features obtained from the 0.999 percentile
of the Spearman correlation.

#Features Accuracy Sensitivity Speci�city

17982 0.76(0.14) 0.77(0.27) 0.75(0.16)

2000 0.65(0.15) 0.65(0.21) 0.65(0.24)

1000 0.60(0.16) 0.62(0.27) 0.57(0.31)

500 0.58(0.08) 0.70(0.20) 0.47(0.18)

250 0.61(0.09) 0.65(0.21) 0.57(0.20)
Table 3. Results using linear SVM on normalized JD features obtained from the 0.995
percentile of the Spearman correlation measures.

#Features Accuracy Sensitivity Speci�city

27474 0.84 (0.10) 0.90 (0.17) 0.77 (0.14)

2000 0.79 (0.12) 0.85 (0.17) 0.72 (0.08)

1000 0.79 (0.10) 0.90 (0.13) 0.67 (0.17)

500 0.79 (0.13) 0.85 (0.21) 0.72 (0.14)

250 0.84 (0.10) 0.92 (0.12) 0.75 (0.17)
Table 4. Results using linear SVM on DM features over the 0.995 percentile of the
Pearson correlation measures.

#Features Accuracy Sensitivity Speci�city

43967 0.66 (0.19) 0.70 (0.20) 0.62 (0.24)

2000 0.75 (0.13) 0.75 (0.26) 0.75 (0.17)

1000 0.69 (0.15) 0.77 (0.14) 0.60 (0.24)

500 0.66 (0.16) 0.72 (0.30) 0.60 (0.17)

250 0.66 (0.17) 0.70 (0.20) 0.62 (0.24)
Table 5. Results using linear SVM on JD features over the 0.990 percentile of the
Pearson correlation measures.



4 Conclusions

In this paper we report classi�cation results on the application of a feature
extraction process based on the deformation vectors obtained from non-linear
registration processes. The sample is a subset of the OASIS database carefully
selected to be pairwise comparable. From the displacement vectors we computed
two scalar measures: the magnitude of the displacement vector and the Jacobian
determinant of the displacement gradient matrix. We compute the Spearman's
and Pearson's correlations of the voxel values with the control variable, selecting
voxel sites with the higher correlation. Results show that the deformation vector
magnitude features provide better classi�cation accuracy reaching the values
of the reference results. Results for the Pearson features are better than for
the Spearman features. Although we did not use any combination of classi�ers
in this study [17], it is important to note how the fusion of information from
di�erent images was used to extract relevant features for the classi�cation task.
This process of fusion of images of di�erent modalities can be found in a wide
variety of medical imaging studies. We are working on the application of non-
linear SVM, using RBF kernels, and extending the experimental exploration to
other classi�ers and combinations.
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