Protein Fold Recognition with Combined SVM-RDA Classifier

Wiesław Chmielnicki¹ Katarzyna Stąpor²

¹Jagiellonian University, Kraków, Poland ²Silesian University of Technology, Gliwice, Poland

HAIS 2010, San Sebastian, 23rd - 25th June 2010

Outline

- Protein structure
- Methods of protein structure predition
- The database and the feature vectors
- First approach: an RDA classifier
- Second approach: an SVM classifier
- A binary and a multi-class problems
- The proposed hybrid SVM-RDA classifier
- Results and conclusions

Protein structure

 Primary protein structure – the sequence of amino acid residues

Protein structure

Secondary protein structure

Protein structure

• Tertiary (3D) protein structure - protein fold

Methods of protein fold prediction

- Ab initio protein modelling
 - Based on physical principles
- Comparative protein modelling
- Side chain geometry prediction
- Statistical methods
 - Based on amino acid composition
 - And other protein parameters
- The recognition ratios varied from 50 to 60 percent

The database

Training set and testing set

Pald many					
Fold name	Structural	Fold index	Number of		
	class		training set	testing set	
Globin-like	α	1	13	6	
Cytochrome c	α	7	7	9	
DNA-binding 3-helical bundle	α	4	12	20	
4-helical up-and-down bundle	α	7	7	8	
4 helical cytokines	α	9	9	9	
Alpha; EF-hand	α	11	7	9	
Immunoglobulin-like β-sandwich	β	20	30	44	
Cupredoxins	β	23	9	12	
Viral coat and capsid proteins	β	26	16	12	
ConA-like lectins/glucanases	β	30	7	6	
SH-3 like barrel	β	31	8	8	
OB-fold	β	32	13	19	
Trefoil	β .	33	8	4	
Trypsin-like serine proteases	β .	35	9	4	
Lipocalins	β	39	9	7	
(TIM)-barrel	α/β	46	29	48	
FAD (also NAD)-binding motif	α/β	47	11	12	
Flavodoxin like	α/β	48	11	13	
NAD(P)-binding Rossman fold	α/β	51	13	27	
P-loop containing nucleotide	α/β	54	10	12	
Thioredoxin-like	α/β	57	9	8	
Ribonuclease H-like motif	α/β	59	10	14	
Hydrolases	α/β	62	11	7	
Periplasmic binding protein-like	α/β	69	11	4	
β-grasp	α+β	72	7	8	
Ferredoxin-like	α+β	87	13	27	
Small inhibitors, toxins, lectins	α+β	110	14	27	
Total 313			313	385	

The feature vectors

- The feature vectors are based on six parameters
 - Amino acids composition
 - Predicted secondary structure
 - Hydrophobity
 - Normalized Van der Walls volume
 - Polarity
 - Polarizability
- The detailed description can be found in Ding and Dubchak papers

An RDA classifier

- Quadratic Discriminant Analysis
 - Discriminant function

$$d_k(\mathbf{X}) = (\mathbf{X} - \mu_k)^T \Sigma_k^{-1} (\mathbf{X} - \mu_k) + \log |\Sigma_k| - 2 \log \pi(k)$$

Estimates

$$\hat{\mu}_{k} = \overline{X}_{k} = \frac{1}{N_{k}} \begin{bmatrix} \sum_{i=1}^{N} X_{n1} \\ \vdots \\ \sum_{i=1}^{N} X_{np} \end{bmatrix} = \begin{bmatrix} \overline{x}_{1} \\ \vdots \\ \overline{x}_{p} \end{bmatrix}$$

$$\hat{\Sigma}_{k} = \frac{S_{k}}{N_{k}} = \frac{1}{N_{k}} \sum_{c(v)=k} (X - \overline{X}_{k})(X - \overline{X}_{k})^{T}$$

$$\hat{\Sigma}_k = \frac{S_k}{N_k} = \frac{1}{N_k} \sum_{c(v)=k} (X - \overline{X}_k) (X - \overline{X}_k)^T$$

An RDA classifier

- Covariance matrix regularization
 - Let's replace the individual class covariance matrices by their average

$$\hat{\Sigma} = \frac{\sum\limits_{k=1}^{K} S_k}{\sum\limits_{k=1}^{K} N_k}$$

A less limited approach

$$\hat{\Sigma}_k(\lambda) = (1 - \lambda)\hat{\Sigma}_k + \lambda\hat{\Sigma}$$

The recognition ratio is 55.6%

Maximun-margin hyperplane

Discriminant function

$$f(x) = sign\left(\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b\right),\,$$

• where $0 \le \alpha_i \le C, i = 1, 2, ..., N$

The RBF kernel

$$K(x_i, x) = -\gamma ||x - x_i||^2, \gamma > 0$$

- Advantages of an SVM
 - Maximization of generalization ability
 - No local minima
 - Robustness to outliers
- Disadvantages of an SVM
 - Long training time
 - The selection of a kernel parameters
 - It is a binary classifier

- Extension to the a multiclass problem
 - We can consider all classes in one optimization
 - Or cover one n-class problem with several binary problems
- The approach with binary problems
 - One-versus-others strategy
 - One-versus-one strategy
 - Others: DAG, ADAG, BDT, DB2, pairwise coupling
- The recognition ratio is 58.7%

Combined SVM-RDA classifier

The reliability of the binary classifiers

Combined SVM-RDA classifier

Discriminant function of an RDA classifier

$$d_k(\mathbf{X}) = (\mathbf{X} - \mu_k)^T \Sigma_k^{-1} (\mathbf{X} - \mu_k) + \log |\Sigma_k| - 2 \log \pi(k)$$

Let's define

$$d_{min}(x) = \min\{d_k(x)\}, k = 1, 2, \dots, n$$

Then, for every binary classifier

$$1 - \frac{d_i(x) - d_{min}(x)}{d_{min}(x)}$$

 Now, the value defined above will be a weight of the vote of the binary classifier

Combined SVM-RDA classifier

Results

- RDA classifier 55,6%
- SVM classifier– 58,7%
- Combined SVM-RDA classifier 61,8%
- Comparison with other methods

Method	Recognition ratio
$\overline{ ext{SVM}}$ (Ding and Dubchak 2001)	56.0%
HKNN (Okun 2004)	57.4%
$\overline{ m DIMLP-B}$ (Bologna et al. 2002)	61.2%
RS1_HKNN_K25 (Nanni 2006)	60.3%
MLP (Chung et al. 2003)	51.2%
SVM-RDA	61.8%

Thank you