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Abstract

This Thesis deals with two different topics centered about applications of Com-

putational Intelligence techniques. The first topic is the implementation of si-

multaneous localization and mapping (SLAM) algorithms that are appropriate

for low cost LiDAR sensors, specifically the Quanergy M8. Conventional and

Deep Learning algorithms have shown shortcomings dealing with these data,

hence this Thesis proposes a novel hybrid SLAM algorithm that achieves good

results over in-house datasets captured with the low-cost LiDAR sensor. The

second topic tackled in this Thesis is the discrimination of animal models on

the basis of pressure signals. For this task, we work on real experimental data

provided by a collaborating neurosciences team. The Thesis deals with the se-

lection of signal features and the experimentation with a diversity of state of

the art machine learning algorithms. The application of transfer deep learning

upon signal spectrogram images improves significantly over conventional ma-

chine learning algorithms, concluding that it is feasible to discriminate animal

models on the basis of pressure signal captured during locomotion periods.

Besides the global objectives of the Thesis a number of operational objectives

have been achieved and reported, such as the set-up of Quanergy M8 LiDAR, the

collection and publication of benchmark in-house datasets, the implementation

and validation of the SLAM algorithms after tuning them, the segmentation
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of the pressure signals of the animal model, and the extensive experimentation

carried out regarding diverse feature extraction and classification models.

Keywords: Computational Ethology, Animal Model Discrimination, LiDAR based

SLAM, LiDAR based Navigation.
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Chapter 1

Introduction

This Chapter provides the motivation and overall description of this Thesis.

Section 1.1 provides some personal context that may allow to understand the

evolution of the Thesis works and reported contributions. Section 1.2 provides

some background information on the two main topics of the Thesis, and the

motivation for the works. Section 1.3 refers the publications achieved while

working in this Thesis. Section 1.4 details the objectives and contributions of

the Thesis. Finally, Section 1.5 details the structure of the Thesis.

1.1 Research Personal Context

As many other researchers in the world, the pandemic of COVID-19 declared

by the WHO has had a strong influence on the research track followed in the

past years. The PhD grant started in 2019, few months before the pandemic.

At this time, the Computational Intelligence Group had recently purchased a

new LiDAR sensor that was advertised as innovative low cost medium resolu-

tion system. I started to work on the system, updating the operating system

of the accompanying computer, and tuning it to achieve some recordings. We

1
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carried out several sessions of data recording in the upper floor of the Facultad

de Informatica, and the two best recordings become our in-house experimental

datasets. Next, I was working on the application of conventional and deep learn-

ing based approaches for SLAM over these datasets. An early surprise was that

applying public domain deep learning approaches did not work at all over these

datasets. So, we focused on traditional approaches. This work was interrupted

by the pandemic declaration, that forced me to fly from San Sebastian, and

continue work remotely during the year 2020 and a great part of 2021. With

the background of the panic induced by the pandemic declaration and under the

draconian regulations imposed by the political powers, we achieved to propose

a hybrid algorithm that performed nicely on the most difficult in-house dataset.

During the remote working period, we were doing review research on Com-

putational Ethology and related issues, in preparation for the intended core of

the Thesis work. Early 2022, I was able to make a secondment with Dr. Xavier

Leinekugel in Marseille, for three months. The goal of the stage was to be ac-

quainted with the actual experimental tools and data of the host research team,

in order to advance on the computational tools developed for the analysis of the

observed data and to collaborate with the host research team in the generation

of new ways to characterize animal models that can be of use in the evaluation

of the effect of therapies and new drugs. This stage happened two years later

than originally scheduled thanks to the political effects of the pandemic. The

second half of the year 2022 and early months of 2023 have been devoted to

the formulation and realization of the research work related to Computational

Ethology in this Thesis.
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1.2 Background and Motivation

In this Section we summarize the background and motivation for the two main

topics covered in this Thesis.

1.2.1 SLAM Applications with LiDAR Data

Light detection and ranging (LiDAR) sensors have been used for scanning and

reconstruction of indoor and outdoor environments [23], even in underground

mining vehicles [209]. The fusion of LiDAR with GPS allows for large scale

navigation [49] of autonomous systems. Simultaneous localization and mapping

(SLAM) is a highly relevant process for autonomous systems. Accurate sensing

provided by range sensors such as the LiDARs improve the speed and accu-

racy of SLAM, which can become an integral part of the control of innovative

autonomous vehicles.

LiDAR sensors have been applied to various SLAM problems in conjunction

with the tools commonly used in computer vision, such as loop closure [9], the

removal of moving objects in dynamic environments [43], and Federated filtering

of SIFT visual features for improve indoor mapping [118]. Low-cost LiDARs

have been also installed in unmanned aerial vehicles for remote sensing, where

they require non-rigid registration methods to register images and improve the

measurement quality [120].

Recently, LiDAR based SLAM is becoming affordable by new sensors such

as the M8 Quanergy LiDAR. However, these sensors offer less quality data and

lower resolution (much less beams and less samples per second) that hinders

the performance of registration methods. The Deep Learning based approaches

seem to be sensitive to these data flaws. Specifically, in our experience a state-

of-the-art Deep Learning based approach failed to produce meaningful results

after several attempts to carry out transfer learning over a dataset collected
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indoors with one such affordable sensors. Consequently, traditional methods

appear to be more likely to output better results than artificial intelligent based

methods for these low-cost sensors. In this Thesis a comparison of three tra-

ditional registration methods applied to the path estimation followed by the

LiDAR sensor is provided; namely, the Iterative Closest Points (ICP), Coher-

ent Point Drift (CPD), and Normal Distributions Transform (NDT) registration

methods. Moreover, a hybrid point cloud registration method is proposed to

take advantage of the high accuracy provided by the classic ICP algorithm, and

the robustness of the NDT registration method.

1.2.2 Computational Ethology

Ethology is defined as the discipline that studies the animal behavior in terms

of its phenomenological, causal, ontogenetic and evolutionary aspects, in order

to provide answers to the causes and development that animal behavior under-

goes, as well as to understand how it is performed [8], bearing in mind that

behavior is understood as the set of muscular responses of a living being as a

consequence of an external stimulus and internal motivation [73]. In this way

it is possible to extract behavioral characteristics and study their alterations

due to diseases or disorders. In addition, it is now possible to generate animal

models with genetic modifications that provide study subjects with anatomy,

physiology or response to a pathogen that are sufficiently similar to humans to

be able to extrapolate the results obtained to them, very useful in Pharmacology

to test new medicines. The most commonly used models in research are rodents,

especially mice and rats, zebra fish, amphibians and reptiles, birds and other

small animals. Early ethology studies were conducted visually, describing what

researchers saw in each experiment qualitatively. Later on, they began to eval-

uate certain behaviors on the basis of some predefined criteria, thus beginning
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a quantitative approach.

Computational ethology is the study of animal behavior using Computer Vi-

sion and Artificial Intelligence (AI) techniques to help quantify and analyse be-

havioral patterns [44]. This is usually done by studying animals in free-ranging

environments and analysing specific behaviors, or calculating ethograms, which

describe how often each action is performed and the probability of the next

action being performed, in order to try to find out how decision-making is car-

ried out [8]. Therefore, Computational Ethology allows the incorporation of

advances in Computer Vision and AI in the study of animal behavior.

1.3 Publications Produced During the PhD The-

sis

During this PhD Thesis we have produced the following publications:

1. Aguilar-Moreno, M., Graña, M. (2021). A Comparison of Registration

Methods for SLAM with the M8 Quanergy LiDAR. In: Herrero, Á., Cam-

bra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th

International Conference on Soft Computing Models in Industrial and En-

vironmental Applications (SOCO 2020). Advances in Intelligent Systems

and Computing, vol 1268. Springer, Cham. https://doi.org/10.1007/978-

3-030-57802-2_79

2. Aguilar-Moreno, M., Graña, M. (2020). An Hybrid Registration Method

for SLAM with the M8 Quanergy LiDAR. In: de la Cal, E.A., Villar

Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent

Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344.

Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_3
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3. Graña M, Aguilar-Moreno M, De Lope Asiain J, Araquistain IB, Gar-

mendia X. (2020). Improved Activity Recognition Combining Inertial

Motion Sensors and Electroencephalogram Signals. Int J Neural Syst.

2020;30(10): 2050053. https://doi.org/10.1142/S0129065720500537

4. Aguilar-Moreno, M., Graña, M. (2022), On registration methods for SLAM

with low resolution LiDAR sensor, Logic Journal of the IGPL; jzac037,

https://doi.org/10.1093/jigpal/jzac037

5. Aguilar-Moreno, M., Graña, M. (2023). Computational Ethology: Short

Review of Current Sensors and Artificial Intelligence Based Methods. In:

Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds)

Engineering Applications of Neural Networks. EANN 2023. Communica-

tions in Computer and Information Science, vol 1826. Springer, Cham.

https://doi.org/10.1007/978-3-031-34204-2_2

6. Aguilar-Moreno, M., Graña, M. (2023), Phenotype Discrimination based

on pressure signals by transfer learning approaches, International Work-

Conference on Artificial Neural Networks (IWANN 2023), accepted.

1.4 Objectives and Contributions of the PhD

Thesis

1.4.1 LiDAR based SLAM

The work carried out on LiDAR based SLAM algorithms was intended originally

to test the feasibility of using a low-cost LiDAR sensor for indoor SLAM. An

operational objective was to set up the system and achieve data recordings of

some quality. Another operational objective was to test public domain LiDAR

SLAM algorithm implementations over the datasets recorded in-house in order
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to validate their usefulness for the task. A final objective was to propose a

robust algorithm that could cope with the difficulties found by conventional

algorithms on this data.

The contributions of the Thesis in this topic are as follows:

• We have carried out a review of the literature regarding LiDAR based

SLAM as well as other applications of SLAM. This review is partially

reproduced in Chapter 2, but in its extensive form will be submitted for

publication in journal after the Thesis dissertation.

• We have setup the low-cost LiDAR system, dealing with non trivial soft-

ware obstacles that needed the upgrade of the operating system in a very

closed setting, with no help from the selling company. This system is

currently operational and available for the use of members in the research

group.

• We have carried out the data capture of two in-house datasets that support

the computational experiments reported in this Thesis. These datasets are

available open access data in two different Zenodo entries 12. One of the

datasets has been downloaded more than 300 times, and the other more

than 100 times.

• We have evaluated deep learning architectures over these in-house datasets.

The results achieved were of low quality, some of them are reported here

in order to communicate them.

• We have proposed a novel hybrid algorithm that improves over conven-

tional state of the art LiDAR based SLAM algorithms on these in-house

datasets.
1https://doi.org/10.5281/zenodo.4302360
2http://doi.org/10.5281/zenodo.4302366

https://doi.org/10.5281/zenodo.4302360
http://doi.org/10.5281/zenodo.4302366
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1.4.2 Computational Ethology

In this Thesis we have analysed data recorded with a multisensor system com-

posed of a top video camera and the Phenotypix platform, which is a piezo-

electric pressure sensor that records the movement of animals, developed by

Dr. Leinekugel and his research team. Specifically, this Thesis work has been

focused on answering the following research question: Is it possible to discrim-

inate animal models by using Artificial Intelligence algorithms to process the

piezoelectric pressure signal?

Such a general research question is rather difficult to deal with. We have

further constrained it to the following question: Is it possible to discriminate

animal models by using Artificial Intelligence algorithms to process the piezo-

electric pressure signal extracted during the locomotion periods?

In order to attack the problem, a first operational objective is carry out the

locomotion periods of the signal. Another operational objectives are to find a

signal representation that is amenable to the analysis, and to test the diverse

machine learning algorithms that are available in the state of the art.

The contributions of the Thesis in this topic are as follows:

• We have extracted the locomotion periods on the basis of the analysis of

the animal trajectories extracted from the video recordings in an auto-

matic way. These periods are applied to the piezoelectric signal to extract

the corresponding signal chunks.

• We have proposed and tested several ways to compute the piezoelectric

signal spectrograms of the locomotion periods.

• We have tested several feature extraction algorithms (detailed in Chapter

7) that can be used as input by the machine learning algorithms.

• We have tested and evaluated an exhaustive collection of machine learning



1.5. STRUCTURE OF THE PHD THESIS 9

algorithms, including the application of deep transfer learning approaches

in the discrimination of the animal models based on the pressure signal

corresponding to locomotion periods. The conclusions are positive: it is

possible to discriminate animal models by using their locomotion pressure

signals.

1.5 Structure of the PhD Thesis

The PhD Thesis has the following structure:

• Chapter 2 provides a review of the state of the art of LiDAR based al-

gorithms, including 3D reconstruction as well as SLAM for navigation

applications.

• Chapter 3 describes the collection of data in an in-house effort to build

resources for SLAM experimentation. It also contains some preliminary

results on the failed application of deep learning approaches to this data

that motivates the used of classical approaches.

• Chapter 4 Chapter gives the detailed description of SLAM algorithms

applied to the data described in the previous Chapter 3.

• Chapter 5 reports the results of computational experiments performing

SLAM over the data collected and described in Chapter 3.

• Chapter 6 provides a quick review of the state of the art of Computational

Ethology in order to set the stage for the reported experiment.

• Chapter 7 contains the description of the actual data and methods applied

in the Computational Ethology experiment. The Chapter describes the

animal models, the generation of the signal, the segmentation process, the
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feature extraction processes, and the classification methods applied to the

signal.

• Chapter 8 reports the results of the Computational Ethology experiments.

It contains a summary with the results of all computational experiments

in terms of classification performance.

• Chapter 9 provides some overall conclusions and proposals of future work

for the two lines of research encompassed by this Thesis.



Chapter 2

Introduction to SLAM

Applications with LiDAR

This Chapter describes some of the fundamentals of LiDAR sensors, reviewing

the state of the art related to the processing approaches for LiDAR data, their

applications, and the best known public point cloud databases used for the

validation of computational approaches. The Chapter has four main parts.

Section 2.1 will explain the LiDAR fundamentals in order to know how LiDARs

work and the factors that affect their sensibility. This Section also includes a

short summary of the LiDAR brands found in the market, and the platforms

and sensors that can be used together with the LiDARs. Section 2.2 provides

a review of the applications of LiDAR sensors. Even though this Thesis will be

focused on Simultaneous Localization and Mapping (SLAM) applications and

algorithms, we include other applications and approaches in this review. Section

2.3 reviews computational approaches developed for LiDAR data processing.

Finally, Section 2.4 will go through the most relevant LiDAR databases so far,

by using the indexed citation number for each contribution.

11
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Figure 2.1.1: Triangulation ranging principle.

2.1 LiDAR Fundamentals

Light detection and ranging (LiDAR) is a remote measurement technique based

on a light beam that computes distances from the sensor to surrounding obsta-

cles. Once the surrounding obstacles are known, a point cloud is generated that

locates all objects found in the LiDAR field of view.

LiDARs can be classified into 3 groups depending on its working principle:

optical triangulation, phase difference, and time of flight. The first approach is

illustrated in the figure 2.1.1 and it is based on geometrical principles. If three

measurements are known in a triangle, it is possible to know any point in the

triangle. In this method, the distance is calculated with the separation between

the transmitter and the receiver, i.e. baseline, and the both angles with the

baseline. This method is focused for short-range measurements as its accuracy

decreases with the distance to the target (∼ R2).

Phase difference technology obtains the target distance by means of the

phase difference between the transmitter and the receiver taking into account

the number of complete wave cycles. The range is computed as half the spatial

wavelength of the carrier frequency and the range resolution depends on the

modulation frequency and the phase difference resolution [50]. In the figure

2.1.2 is exemplified this physical principle.

Finally, the principle of Time-of-Flight (TOF) technology is based on the

light velocity equation and it is shown in the figure 2.1.3. This kind of LiDARs

emit a laser beam with a predetermined azimuth and inclination angle towards
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Figure 2.1.2: Phase difference principle.

Figure 2.1.3: Time-of-Flight principle.

a surface. The distance between the sensor and this surface is computed by

timing the time of flight and measuring the intensity of the light that returns.

For this, the laser emits thousands of light pulses per second and adjusts the

horizontal and vertical direction to sweep the entire field of vision offered by the

device (usually 360º in the horizontal plane and 90º in the vertical plane). The

range is only limited by the energy dispersion, hence this kind of LiDARs can

be used in short and long range applications, being the most used in research.

The TOF LiDAR accuracy depends on the sensibility of the detector but

there are some parameters that can affect LiDAR efficiency [100]:

• The reflectivity of the target material such as color or roughness.

• The inclination of the angle with which the laser hits the surface.

• The distance to the target, that is, the further the pulse reaches, the wider

and less intense the light will be.

• Atmospheric conditions: rain, fog, humidity or dust.
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Figure 2.1.4: Velodyne HDL-32E LiDAR.

2.1.1 Main LiDAR Brands

There are currently many different brands of LiDAR on the market with a wide

range of specifications depending on the application. Within each manufacturer,

there exist distinct models depending on the number of beams, precision or

weight. For instance, Velodyne brand has the VLP-16, HDL 32-E or HDL 64-

E models with 16, 32 and 64 beams respectively, and all of them are used in

SLAM, modeling, localization or reconstruction tasks. Furthermore, Velodyne

has lighter models as Puck VLP-16 or Puck-Lite VLP-16 for aerial applications.

The figure 2.1.4 shows one of the most used commercial LiDAR, the Velodyne

HDL-32E1.

SICK LiDARs also have several models for SLAM or place recognition

such as LMS1XX for indoor use and LMS5XX for outdoor use. Moreover,

SICK NAV2XX models are designed to obtain the position in navigation tasks.

Hokuyo LiDARs are used for SLAM, localization, mapping and reconstruction

in Robotics, with ROS2 (Robot Operating System) support. UTM-30LX-XX

sensors are suitable for intelligent robots and applications with high velocity

due to its range and fast response and URG-04LX-XXX models are suitable for

autonomous navigation and mapping. Leica LiDARs are designed for airborne

applications and its ALS model (airborne laser scanner) or the SPL model (sin-

gle photon LiDAR) are suitable for surveying and forestry applications. Optech
1https://velodynelidar.com/products/hdl-32e/
2https://www.ros.org/
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is another LiDAR brand and with its ALTM (airborne laser terrain mapper)

model is able to detect and reconstruct scenarios or estimate tree top height

from UAVs or airborne. Riegl LMS (laser measurement systems) LiDAR has

several models depending on the application, such as QXXX, for long range

airborne laser scanner, which is used for tree segmentation, reconstruction or

terrain comparison between meteorological phenomena, or VZ-XXX, for terres-

trial tasks, for instance, tree reconstruction or sidewalk inventory. RPLidar is

a brand from the ROS component that can be used in autonomous navigation

or localization, installed in mobile robots or in Micro aerial vehicles, due to its

lightweight.

2.1.2 LiDAR Configurations

LiDAR sensors can been installed in a variety of platforms such as ground vehi-

cles, autonomous robots, flying aircrafts and Unmanned Aerial Vehicles (UAV)

, satellites, and some of them can also be operated manually. System configu-

ration depends on the application. In ground vehicles, systems include several

kinds of sensors, each fulfilling a role for autonomous driving or driving assis-

tance, including several CCD cameras, sonar, and radar as well as the LiDAR

system. Most popular devices for autonomous driving applications are Velodyne

LiDARs, which have up to 64 sensing planes. Airborne LiDAR are deployed for

the creation of digital elevation maps, forestry management and urban planning.

UAVs can be used for agriculture and military missions. Manually operated Li-

DARs are often used for topological measurements and for human navigation.

There exist certain commercial platforms that have been used to carry out

experiments with LiDARs such as the Pioneer 3AT mobile platform, the Diddy-

Borg six wheeled robot, the ROS Turtlebot mobile platform, or the Husky-A200

series ground vehicle. Moreover, LiDARs are often accompanied by other sen-
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sors to improve their accuracy in experiments. These sensors can be cameras

(stereo, reflex, RGB / Gray, Kinect, ...), Inertial Measurement Units (IMU),

satellite navigation systems (GNSS, GPS), Inertial Navigation Systems (INS)

or encoders.

2.2 LiDAR Applications

LiDAR is used in a variety of applications due to its precision, large range, and

its ability to process data in real time. The main applications are related to

SLAM, robotics, remote sensing, autonomous driving, and 3D mapping, among

others.

2.2.1 LiDAR SLAM and Robotics Applications

SLAM algorithms are able to create a map and locate themselves by registering

LiDAR point clouds in consecutive time instants. The main field of applica-

tion of SLAM is Robotics, achieved by mounting the LiDAR sensor in aerial

or terrestrial vehicles such as UAV, Automated Guided Vehicle (AGV), and

Unmanned Ground Vehicle (UGV).

Examples of applications combining UAV with SLAM are the monitoring of

sugarcane crop by using photogrammetry equipment, inertial measurement sys-

tems or navigators [178], and, in forest spaces, with a quadcopter and a backpack

to have different perspectives [161]. Similarly, AGVs use LiDAR information

to carry out indoor SLAM in semiconductor factories where following marks

are not available [36], in GNSS-denied environments [78] and for rescue tasks

in mining environments [122]. In forestry applications, UGV can be used to

map the environment with algorithms such as Graph-SLAM [160] or SLOAM

(Semantic LiDAR Odometry and Mapping), which creates also cells for each

detected tree [33].
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2.2.2 Remote Sensing LiDAR Applications

LiDAR sensors are widely used in remote sensing due to their large range (50m

- 300m). Within this category, applications such as forestry measurements and

classification, urban landscapes creation or industrial measurement and inven-

tory are the most common.

2.2.2.1 Forestry Measurement and Classification

Airborne systems like ALS or terrestrial systems such as Terrestrial Laser Scan-

ner (TLS) are often used to carry out the measurements necessary to analyse

forestry data. Current applications of LiDAR in forest lands are tree species

classification, based on hyper-spectral and airborne LiDAR data together with

tree species measurements [142] and tree crown segmentation [218], where in a

first step false tree crowns are eliminated.

Inventorying a crop field helps to predict the crop yield and to plan the

harvesting of fruits. For this purpose, the number of trees and their geometrical

parameters, such as tree height or canopy base height, are calculated [77]. In the

case of tropical forests, there are other parameters such as Leaf Area Index (LAI)

or Diameter at Breast Height (DBH) [91, 46] that are computed to monitor the

health of the forest. Finally, there are methods to estimate forest biomass for

cartographic studies using airborne LiDAR by applying regression techniques

for estimation and prediction [190, 188].

2.2.2.2 Urban Landscapes Creation

LiDAR sensing has acquired relevance in urban reconstruction too. Many prac-

tical applications make use of airborne LiDAR data to create urban landscapes

by means of intelligent algorithms.

For instance, there are applications for the reconstruction of building roofs,
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which use a Triangulated Irregular Network (TIN) model to detect outliers and

extract the roof structure in the form of a grid and then project it onto a label

map in order to refine it and obtain the final surface [123]. Another approach

to reconstruct urban scenarios is clustering with aerial LiDAR data to separate

the roofs in different parts or known models to refine the surface [165].

Classification algorithms are also used in urban landscapes generation to ease

the reconstruction. As an example, it is possible to use a decision tree classifier

to assign a label to every building collected with the aerial LiDAR [227] or

classify these point clouds into trees, buildings and ground to reconstruct only

objects of interest [228]. To deal with the large amount of LiDAR data, reduction

method has been developed using feature extractors and optical image [212].

2.2.2.3 Industrial Measurement and Inventory

Laser based metrology is used in many industrial processes. For instance, in

steel roller mills, sensors for surface reconstruction are capable of detecting

millimeter-scale surface deformations [7]. Another LiDAR application is the

inventory of luminaires in buildings, where the ceiling is segmented and the

point clouds are converted into binary images to detect the light points and

classify them into different types [51].

2.2.3 Autonomous Driving

Autonomous driving requires real-time processing to manage dynamic and static

obstacles during movement and a wide field of view to scan the environment and

create a 3D map. For this reason LiDAR sensors are widely used in this field

to carry out real-time navigation and road inventory.
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2.2.3.1 Real Time Navigation

Apart from the advantages of LiDAR, there are other reasons to use it, for

example in locations where GNSS signal is not accessible. In fact, there exists

a system composed of a LiDAR and a camera, capable of detecting road lines

and measuring the distance to them to improve navigation with a known map

[172].

In mining environments, where satellite signal is unavailable, Micro Aerial

Vehicles (MAV) can be equipped with a LiDAR in order to improve autonomous

navigation while classifying images with a Convolutional Neural Network (CNN)

[137]. In aerospace tasks, LiDAR is an interesting option for navigation, where

simulations are really welcome due to the experimental high costs [150].

LiDAR sensing is used also for guiding disabled people, who can use a walk-

ing stick with the pre-loaded map that recalculates the trajectory in real time

taking into account the obstacles found during navigation [136]. Others re-

cent applications for navigation with LiDAR can take advantage of intelligent

algorithms based on Deep Reinforcement Learning (DLR) [200].

2.2.3.2 Road Inventories

Road inventory is key to improve the management and development of the cities.

One example of this application uses a TLS placed on the hood of a car to collect

data while driving. This way, LiDAR point clouds can be processed offline in

order to obtain road maps with the surface, the central line and the boundary

line [90]. Other than roads, a sidewalk inventory can be done using LiDARs,

being useful to improve the maintenance plans and as a map for wheelchairs

users [84].
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2.2.4 3D Mapping

Environment mapping is an important step for autonomous navigation. In this

sense LiDARs are also crucial to obtain precise maps with high quality even

in GNSS-denied environments [47], in both static and dynamic scenarios [115].

Besides map creation, LiDAR point clouds segmentation and classification are

also possible giving labels such as buildings, trees, roads, sidewalks or traffic

signals outdoors [226], or ceiling, walls, floor, columns and cars in underground

car parks [75]. In agriculture, LiDAR mapping is also an interesting tool to map

surfaces from the air and obtain the location of the trees in an apple crop by

using depth measurements and computing treetops centroids [77].

Due to its low sensibility with lighting variations, LiDAR sensors are an

option to carry out measurements in caves and mines, where GPS signal is

denied. One possibility would be a mobile platform equipped with 2 LiDARs

to generate maps with high precision odometry [152] or an helicopter with a

LiDAR to map the cavity profile [143].

Surveying is another application for LiDARs thanks to their high resolution

and lightness, and these sensors can also be combined with Texel cameras into

a Unmanned Aerial System (UAS) to obtain better results in reconstruction

without the need to use high quality navigation systems [21].

In this field of application, the analysis of coastal barriers before and after

a storm can be studied with an aerial LiDAR, in terms of the recovery and

the impact of meteorological phenomena [96]. Finally, Archaeology requires

airborne LiDAR also to visualize footprints and walking paths from depth data

collected from air [196].
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2.3 Computational Approaches

LiDAR point clouds allow to obtain useful information about the environment

to carry out tasks such as localization, mapping, SLAM, classification, align-

ment, object extraction, semantic map generation, detection, segmentation and

reconstruction. In this section different approach to process point could sets

are described, distinguishing two kinds of methods: traditional and artificial

intelligent based methods.

2.3.1 Traditional Methods

Traditional methods are the beginning methods to process point clouds, being

the Iterative Closest Point (ICP) [15] the earliest and one of the most known

methods to align point clouds. Furthermore, there exist variations of the ICP

algorithm that are also used in LiDAR data processing, such as Generalized

ICP (G-ICP) [175] or Ground Plane ICP (PG-ICP) [104]. The former is used

in environment reconstruction [35] and the latter is used in SLAM applications

along with ranging beacons [64] that are installed in the environment allowing

to select the best candidates for loop closure.

Other methods are Procrustes Analysis (PA) and its variations such as Mod-

ified Procrustes Analysis (MPA) [180] that are used in curved building recon-

struction, because it uses an affine transformation matrix instead of a rigid one.

Normal Distributions Transform (NDT) [135] is another example of point

cloud set alignment method that is very robust and gives excellent results

in SLAM and autonomous driving. A variant of NDT method is known as

weighted-NDT [115] and it associates a weight to each object detected by the

LiDAR, depending on the static probability to be mapped in a dynamic envi-

ronment, modifying the original algorithm.

Apart from these algorithms, other interesting algorithms have also emerged
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to process point clouds such as the Hector SLAM algorithm [108] for bridge

inspection [157] and to validate new SLAM implementations [32]. Moreover,

there exist algorithms based on the Directed Geometric Point [127] or integrated

in the mobile mapping system [124] for complex urban environments.

Related to localization, the Monte-Carlo localization [61] is an algorithm

widely used not only as the method itself but also as a base for some variants

such as the Adaptive Monte-Carlo localization [157] or the Self-adaptive Monte-

Carlo localization [214] methods. In the first variation, the map is created

using Hector SLAM and then, a mobile robot navigates by means of Adaptive

Monte-Carlo Localization to carry out bridge bearing inspections. Moreover,

other localization algorithms exist, for instance, to work in severe meteorological

conditions or structural changes in the environment [24]. In a second example,

the LiDAR is placed on a tripod and remains static all the time to obtain

landmark information. With the 5 best matches are obtained, an ICP stage is

implemented to refine the matching and choose the best match [110].

Likewise, many methods have been developed for environment mapping such

as LOAM [220], LeGO-LOAM [177], A-LOAM3 or R-LOAM [149], designed

specifically for LiDAR data processing and as ground truth for new algorithms.

Relative to the first method, LOAM can create large-scale maps using collab-

orative robots and then, merging the map pieces generated by each robot [222].

Similarly to other traditional methods, LOAM has also been used as a base

for new implementations, such as LOCUS (LiDAR Odometry for Consistent

operation in Uncertain Settings), to improve the odometry and the mapping in

Real-Time [152].

Furthermore, the LOAM algorithm can be used in environments where the

GNSS signal is partially denied [78]. However, another approach is recently

implemented for these challenging situations, which develops a virtual GNSS
3https://github.com/HKUST-Aerial-Robotics/A-LOAM
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based on a particle filter to generate the global position and loop closure [47].

Another example of mapping application with LeGO-LOAM is the imple-

mentation of an interactive software for map correction. Initially this algorithm

generates the maps and then, the aforementioned G-ICP method refines the

results [109].

Finally, a traditional method that deserves mention is Random Sample Con-

sensus (RANSAC) [60]. Despite this algorithm it is not made for aligning point

clouds, it is very useful in preprocessing tasks to filter outliers [106] and de-

tect the ground in forest mapping [160], and in postprocessing to remove false

matching [21].

2.3.2 Artificial Intelligent Based Methods

Artificial Intelligence plays an important role in point clouds processing due to

the increase of the computation capacity and velocity. Firstly, Machine Learn-

ing based methods are composed by algorithms such as Support Vector Ma-

chines, Random Forest and K-Nearest Neighbor, among others. Secondly, Neu-

ral Networks, which includes Convolutional Neural Networks and Deep Neural

Networks, are also really used in LiDAR data processing. Finally, Reinforcement

Learning also deserves mention since it is used for route planning in autonomous

navigation.

2.3.2.1 Machine Learning Based Methods

There are several algorithms applicable to point clouds for classification, re-

construction, characterization, object detection or parameter estimation. These

algorithms are Support Vector Machine (SVM) [151], Random Forest, k-Nearest

Neighbor (k-NN) [41] , Decision Trees or k-Nearest Neighbor Trees.

SVM uses LiDAR data in several autonomous driving applications for object
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recognition or classification tasks. For example, point clouds can be classified

as pedestrian or not pedestrian ( among other objects such as vegetation, light

poles, traffic signs or parts of buildings) with SVM [199]. To classify the local-

ization status as success or failure during autonomous driving is also possible

by means of two parameters and the pose of the robot [105]. Another example

of point clouds classification is the traffic sign detection, where LiDAR data are

projected in 2D images and then a hierarchical classification is carried out to

obtain semantic information of the signal [179].

Reconstruction tasks from LiDAR data can also be implemented with an

SVM. In the case of power pylons, point clouds are processed to obtain the

contour maps of the pylon and then the histograms of oriented gradients (HOG)

features by projecting them in an image. The SVM stage is fed with these HOG

features to classify and assign a category to the pylon head [198].Related to roof

reconstruction, point clouds can be classified in building, ground or vegetation

with a SVM [48].

Apart from SVM, decision trees can also classify buildings depending on

physical and morphological parameters from the LiDAR data [227]. Random

Forest [20], which is a combination of prediction trees where each tree votes

for the most popular class at input, allows to extract and generate a network

road using LiDAR data and very-high-resolution (VHR) aerial images. After

pre-processing the LiDAR point clouds into a normalized digital surface model

(nDSM), the data are merged with VHR images to create image objects. Then,

a random forest classifies them into road, shadow, tree, car, building or bare

groups to generate the road network. Once the false segments have been filtered

out, the road center-line can be generated. [223]. Another example of a random

forest classifier uses airborne LiDAR data and satellite image fusion. Having

extracted the features by a Convolutional Neural Network, a random forest
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classifies the roof shape with the help of a dataset of roof images [28].

In addition to feature classification, random forests also allow the character-

ization of objects with LiDAR data. An example is the estimation of measured

canopy structure: canopy cover and height for tree forest classes [3]. Moreover,

k-Nearest Neighbor Trees can also estimate tree top height using LiDAR data

and VHR images. This method obtains the height of the trees as an average of

the heights of neighboring trees with similar properties [154].

As for k-Nearest Neighbor, one application is the classification of barrier is-

land habitats using two parameters: the elevation of the terrain and the distance

from the ocean-facing shore measured with an aerial LiDAR. This classifier dis-

tinguishes between beach, dune, woody vegetation or marsh and it can also be

implemented using SVM and random forest [55].

2.3.2.2 Neural Networks Based Methods

Pre-processing Unlike machine learning-based methods, neural networks need

to modify point clouds to make them more manageable objects because of its

irregularity, lack of structure, and disorder. Point clouds also tend to have

variable densities which greatly hinders their processing. To deal with these

challenges, there are two types of approaches: converting point clouds to struc-

tured data types or working with raw data.

In the first approach, point clouds can be pre-processed by means of the

voxelization, where each point becomes a voxel (i.e., a 3D pixel), generating a

volume. The disadvantages of this method are its high memory consumption

and the introduction of artifacts due to the voxelization process. Another option

would be the image generation from the point cloud by projecting them from

different angles. This method offers better performance than voxelization in

terms of performance and artifacts and also benefits from all Computer Vision

methods. As an example of this approach, there is a segmentation algorithm
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for vehicle detection that uses two views of the same point cloud, the front view

and the bird’s eye view, which are merged and sent to a clustering algorithm

for bounding box extraction and vehicle tracking [192].

In the second approach, neural networks are fed with raw point clouds. The

PointNet neural network [81] was the first application that used unstructured

point clouds directly in Convolutional Neural Networks and is built with 2 sym-

metric functions, a Multi-layer Perceptron (MLP) and a maxpooling function.

Symmetric functions are functions whose output is not dependent on the input

order, opening a new way to develop applications with point clouds without

the pre-processing stage. PointNet has also been used as feature extractor in

various applications [103] and has served as a basis for other neural networks,

such as PointNet++ [167]. The novelty of this neural network is its hierarchi-

cal layer, which makes it better at extracting small parts, for instance in road

environments for pavement inventory, where the PointNet++ neural network

segments the point clouds and the next neural network extracts and merges all

the pieces of the pavement [84].

Consequently, there are more developments that work directly with the raw

point cloud. The following examples feed neural networks directly with the

LiDAR data.

Applications LiDAR data can be used in classification tasks, using a feature

extractor in the early stages of implementation using a stand-alone neural net-

work [25] or using the first layers of a Convolutional Neural Network [142]. In

the DANCE-NET neural network, a convolution operation is used for feature

extraction together with a kernel density estimation to deal with the problem

of variations in the density of the point clouds. Finally, in the classification

stage, the following categories can be differentiated: roof, facade, car shrub,

tree, powerline, low vegetation or fence [125].
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Point clouds can also be segmented to carry out an inventory of forests,

where a Deep Neural Network implements feature extraction and semantic seg-

mentation, creating the Semantic LiDAR Odometry and Mapping for Forest

Inventory (SLOAM) network for tree diameter estimation [33]. Moreover, a

convolutional neural network can detect potential moving objects and obtain

the pose in a SLAM application [203] or in the Liseg network where point

clouds are condensed into 2D matrices [226].

Detection tasks can also be implemented by applying neural networks to

airborne LiDAR data for applications such as detection and reconstruction of

hollow roads for archaeological domains using a ResNet-34 convolutional neural

network [194]. Another application can detect and extract residential build-

ings with Deep Neural Network fed with gray-scale images obtained from point

clouds. In this application, the color value is the relative elevation of the point

and a Convolutional Neural Network distinguishes between buildings and other

objects such as vegetation [229].

In addition to static objects, the detection tasks can be applied to mov-

ing objects such as people and, through a Convolutional Neural Network based

recognition algorithm, distinguishing between certain previously defined activi-

ties [13]. For localization single-line, LiDAR data can be used to feed an artificial

neural network search tree [204]. Besides, LiDAR data can also be compared

with satellite image to obtain vehicle localization, where a Convolutional Neu-

ral Network implements the feature extraction and the comparison with the

satellite image [62].

Semantic maps offer a lot of information about the environment, in addi-

tion to improving navigation efficiency and positioning. To obtain 3D semantic

maps, LiDAR point clouds and images can be merged to feed a neural network

such as PSPNet50 [225] or a Convolutional Neural Network with a 3D full con-
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nection conditional random fields (CFRs) [121]. Another method for semantic

mapping is Recurrent Neural Networks because they take into account tem-

poral variability to make predictions. One example is Recurrent-Octomap, a

refinement method for semantic maps [183].

Deep learning processing of 3D point clouds had a breakthrough with the

proposal of PointNet [166], solving the unordered permutation problem that

arises from the consideration of 3D point clouds. PointNet computes global

features that can be used for classification. Recent advances in this area are

the proposal of a Generative Adversarial Networks (GAN) for impairing the

point cloud [217], and the use of patterns of k-Nearest Neighbors (k-NN) for

the application of omnidirectional Graph Convolutional Neural Networks [221].

These advancements have allowed the application of deep learning to approach

the problem of 3D point cloud registration [224]. Recent works formulate the

registration as regression problem solved with residual based deep architecture

[216]. In the Deep Global Registration approach [38], a deep auto-encoder

architecture is used for outlier removal in order to improve the efficiency of

the ICP algorithm. Siamese networks are also used in order to improve global

localization [215].

2.3.2.3 Reinforcement Learning

In a reinforcement learning problem, the system aims to learn the best possible

behavior through action and reaction interactions based on Markov decision

theory [98]. In each environment, there exist an input i, a state indicator s,

and an action a for every interaction. Every time the agent choose an action, a

reinforcement signal r is received to obtain the action set that output the best

reinforcement.

Autonomous navigation is one of the most common applications of rein-

forcement learning. During the exploration step, the system needs to know the
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actions and the possible situations, i.e. the states, and based on a reward sys-

tem, it will choose the best action for each state. It allows the implementation

of robot path planning algorithms without coding the actions expressly [219].

On the other hand, to obtain the best pair state-action, the Q-Learning

algorithm is widely implemented, for example in robot navigation, where the

LiDAR data can be used in conjunction with RGB camera images [200].

Other more modern reinforcement learning architectures use neural networks

to optimize the search for algorithm optimization parameters [34, 67].

2.4 Data Resources

In order to check the validity of new modeling methods, it is necessary to have

data with the corresponding ground truth. One option is to design field ex-

periments and perform the data collection, but this process requires financial

resources to acquire the LiDAR, the platform and the necessary additional sen-

sors. In addition, it is often time-consuming to collect enough data for the results

to be of interest. Other research teams often opt to use public data reposito-

ries that come with the corresponding ground truth previously calculated by

reliable methods, such as Iterative Closest Point (ICP), Normal Distributions

Transform (NDT) or one of its variants for SLAM applications, or manually la-

beled information for segmentation and classification tasks. Another option is to

use simulators where both the measurement equipment and the desired scenar-

ios for the experiments can be modeled in a very realistic way. In the following,

the public data repositories and simulation environments most commonly used

in the literature are described in more detail.
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2.4.1 Public Data Repositories

There are several well known data collections that have been extensively used

by researchers to demonstrate their computational approaches. In Table 2.1,

some features of the most popular public datasets are summarized. The Kitti

Dataset [70] has been extensively used for validation of autonomous navigation

and SLAM applications. In fact, we found over 4660 citations to this dataset in

a search over Scopus4.

2.4.2 Simulation Environments

Simulated environments are an important tool for testing new measurement

systems or algorithms thanks to their low cost. The most widely used platforms

are Gazebo5 and Stage6, both belonging to ROS, and they allow simulating

mobile platforms, UAV’s and commercial platforms such as The Pioneer 3D-X,

TurtleBot 2 and PR2 robot not only in an aesthetic way with Unified Robot De-

scription Format (URDF), but also adding physical properties with the Open

Dynamics Engine (ODE) or noise, which makes them very realistic. A very

important utility is the possibility to develop robotic algorithms since it is pos-

sible to design the models to behave like the real robot, being a very interesting

method to have an intermediate step between design and implementation, thus

reducing the damage that could be caused to the users or to the platforms

themselves.

4Last checked on 25th April 2023.
5http://gazebosim.org/
6http://wiki.ros.org/stage_ros
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Table 2.1: Public datasets for navigation and object detection.

Dataset Environment LiDAR Platform Applications Citations

Ford Campus
vision and

LiDAR, 2011
[153]

Urban street scenes Velodyne
HDL-64E, Riegl

LMS-Q120

Ford F-250
pickup
truck

Loop closures
for computer

vision and
SLAM

231

Kitti, 2013
[70]

Real-world traffic scenarios
in rural and inner city spaces

Velodyne
HDL-64E

Vehicle
(Volkswa-
gen Passat

B6)

Visual
odometry,
SLAM, 3D

object detection
and tracking

4660

Malaga urban,
2013
[17]

Urban scenarios, real-life
traffic

3 Hokuyo
UTM-30LX, 2
SICK LMS-200

Vehicle
(Citroen

C4)

SLAM , visual
odometry and

object detection

178

MIT Stata
center, 2013

[56]

Indoor with moving people,
furniture relocation and

lighting changes

Tilting Hokuyo
UTM-30LX

PR2 SLAM and
autonomous

driving

41

Oxford
RobotCar,
2016[133]

Urban scenes in all weather
conditions

2 SICK
LMS-151 2D,

SICK LD-MRS
3D

Autonomous
Nisan
LEAF

Long-term
autonomous

driving

739

Google
corporation,

2016[82]

Indoor museum scenes LiDAR Backpack SLAM 1121

NCLT, 2016
[26]

Indoor and outdoors spaces
in all weather, seasons or

lighting conditions

Velodyne
HDL-32E

Segway
robot

SLAM,
navigation,

place
recognition,

object detection
and tracking

200

TorontoCity,
2017 [202]

Aerial and terrestrial data
from urban scenarios

2 LiDARs Airborne
and vehicle

Segmentation 71

Apolloscape,
2018 [88]

Urban scenarios Riegl
VMX-1HA, 2

VUX-1HA
Laser scanners

Vehicle Self-
Localization
and semantic
scene parsing

202

Urban@CRAS,
2018 [68]

Urban scenarios Velodyne
VLP-16

Vehicle SLAM 16

Complex
Urban, 2019

[92]

Urban scenarios Velodyne
VLP-16, SICK

LMS-511

Vehicle SLAM 98

Newer
College, 2020

[170]

Oxford at walking speed Ouster OS-1 64,
(ground truth
Leica BLK),
LiDAR IMU
ICM-20948

Handheld
device

SLAM, 3D
reconstruction

and visual
odometry

50

Urban Nav,
2020 [206]

Deep urban canyon of Hong
Kong

Velodyne 32 Vehicle SLAM 6

DUT-AS,
2021 [24]

Exploring the campus across
seasons

SICK LMS-511 Vehicle SLAM 8
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Chapter 3

In-house LiDAR datasets

In this short Chapter we describe the LiDAR data generated in-house for the

realization of computational experiments that are the main contribution of this

Thesis regarding the realization of SLAM processes on the basis of LiDAR data.

The organization of the Chapter is as follows: Section 3.1 summarizes the mo-

tivation of this contribution and the decision to implement SLAM algorithms

using only traditional methods, without resorting to Deep Learning approaches.

Section 3.2 gives a short relation of the M8 Quanergy LiDAR characteristics in-

cluding a table with the more relevant specifications. Section 3.3 provides the

information about the location and the experimental settings where the data

capture was carried out. Finally, Section 3.4 illustrates the registration fail-

ure when applying Deep Learning algorithms to the data captured with M8

Quanergy LiDAR.

3.1 Motivation

In 2019, the Computational Intelligent Group (CIG) acquired a M8 Quanergy

LiDAR, which is a low-cost sensor comparing market prices. A series of ex-

33



34 CHAPTER 3. IN-HOUSE LIDAR DATASETS

periments were proposed to validate the quality of the results by implementing

SLAM applications. There is a wide variety of both traditional and artificial

intelligence-based SLAM methods based on LiDAR data. Nevertheless, not

all of them are appropriate to make calculations with point clouds when their

density is very low, providing results that are not acceptable. For instance,

Deep Global Registration [38] was used to implement SLAM on the in-house

M8 Quanergy LiDAR data described below achieving very poor results. We

concluded that Deep Learning approaches require sensors with more quantity

of beams to obtain point clouds that provide more information about the envi-

ronment.

New affordable LiDAR sensors, such as the M8 from Quanergy that we are

testing in this Thesis, allow for further popularization of LiDAR based SLAM

applications. Due to its specific innovative characteristics, the M8 sensor still

needs extensive testing by the community in order to assume its integration

in the newly developed systems [144]. The work reported in here is intended

partly to provide such empirical confirmation of the M8 sensor quality continu-

ing experimentation over this sensor data reported elsewhere [2]. We have not

carried out any precise calibration process of the sensor [116, 117]. Instead, we

are assessing the sensor through the comparison of three standard point cloud

registration methods over experimental data gathered in-house.

3.2 LiDAR M8 Quanergy

The Quanergy M8 LiDAR sensor is a multi-laser system with 8 2D-line scanners

located on a spinning head. The Figure 3.2.1 shows the M8 Quanergy LiDAR

physical aspect and some of its specifications. This system is based on TOF

technology whose spin rate is between 5 Hz and 20 Hz and its maximum range

is 100 m. The Table 3.1 shows the M8 LiDAR main parameters. Besides, M8
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Table 3.1: Quanergy M8 sensor specifications.
Parameter M8 sensor specifications
Detection layers 8
Returns 3
Minimum range 0.5m (80% reflectivity)
Maximum range >100m (80% reflectivity)
Spin rate 5Hz - 20Hz
Intensity 8 bits
Field of view Horizontal 360° - Vertical 20° (+3°/-17°)
Data outputs Angle, Distance, Intensity, Synchronized Time Stamps

Figure 3.2.1: The M8 Quanergy LiDAR and diagrammatic specs.

LiDAR comes with 2 desktop applications to manage and visualize point clouds,

a SDK (Software Development Kit) to record and show data in real time, and

another SDK for implementation in the ROS framework.

3.3 Location and Experimental Settings

The experiments were carried out in the third floor of the Computer Science

School of the UPV/EHU in San Sebastian. The M8 LiDAR was set on a

manually-driven mobile platform in order to record the point clouds. The ac-

tual paths followed have small perturbations around the nominal path. We do

not have a precise actual path measurement allowing to quantify the error in

the trajectory. Figure 3.3.1 and figure 3.3.2 show the nominal path followed to

record dataset #1 and dataset #2, respectively.

Both the time sequence of M8 captured point clouds and the MATLAB
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Figure 3.3.1: Nominal path followed during the LiDAR recording for dataset
#1.

Figure 3.3.2: Nominal path followed during the LiDAR recording for dataset
#2.
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scripts used to carry out the computational experiments are published as open

data and open source code in the Zenodo repository for reproducibility in two

different links12.

3.4 The Failure of Deep Learning

The motivation of this Thesis work regarding SLAM algorithms lies in the failure

to achieve adequate processing of the collected data with novel state-of-the-

art approaches, such as Deep Global Registration [38]. We tried to apply the

transfer learning approach to adapt the published system to our data, so we re-

trained the system with our data to no avail. The kind of results achieved are like

the one shown in Figure 3.4.1. The deep registration system loses track when it

reaches the first rotation of the sensor. Our interpretation is that the resolution

of the dataset is too low for the Deep Learning approach to be adequately re-

trained. However, some classical approaches can deal with the low resolution

data appropriately. Consequently, we decided to focus on traditional methods

to validate the quality of the results from M8 Quanergy LiDAR measurements.

1https://doi.org/10.5281/zenodo.4302360
2http://doi.org/10.5281/zenodo.4302366

https://doi.org/10.5281/zenodo.4302360
http://doi.org/10.5281/zenodo.4302366


38 CHAPTER 3. IN-HOUSE LIDAR DATASETS

Figure 3.4.1: An instance of the results achieved over in-house dataset #2 after
transfer learning applied to the Deep Global Registration published model.



Chapter 4

SLAM Algorithms for

LiDAR Data

In this Chapter we provide a formal description of three classical 3D registra-

tion methods used in the SLAM computational experiments, and the proposed

hybrid algorithm. The structure of the Chapter is as follows: Section 4.1 pro-

vides some motivation and introduction to the Chapter. Section 4.2 gives the

generic definition of the point cloud registration algorithms. Section 4.3 pro-

vides a generic template of SLAM algorithms. Section 4.4 provides the formal

definition of the Iterative Closest Point algorithm. Section 4.5 provides the

formal definition of the Coherent Point Drift algorithm. Section 4.6 provides

the formal definition of the Normal Distribution Transform algorithm. Section

4.7 describes our proposed hybrid approach. Finally, Section 4.8 gives some

conclusions and the discussion.

39



40 CHAPTER 4. SLAM ALGORITHMS FOR LIDAR DATA

4.1 Introduction and Motivation

Simultaneous Localization and Mapping (SLAM) [54, 11, 22] aims to estimate a

reconstruction of the environment along with the path traversed by the sensor,

becoming an integral part of ROS [210, 211]. One of the most widely used kinds

of sensors in SLAM are laser based depth measurement sensors, or LiDAR

sensors, which have been used for scanning and reconstruction of indoor and

outdoor environments [23], even in underground mining vehicles [209]. Fusion

of LiDAR with GPS allows for large scale navigation of autonomous systems

[49].

Often, SLAM processes carry out a sequence of registrations of 3D point

clouds, each trying to estimate the rigid transformation of the perceived data

that results from the sensor motion in the world. LiDAR sensors are becoming

the most used for SLAM in autonomous navigation of robots of quite diverse

morphology [169], and autonomous driving [59]. In ground mobile robotics

and autonomous driving, the kind of transformations is limited to translations

and rotations around the axis perpendicular to the ground plane, though some

small rotations in the other axes can happen in autonomous driving applications

due to conditions of the road or sudden accelerations. Conventional LiDAR

sensors for autonomous driving applications are very expensive, providing dense

reading (i.e. 32 lasers in the Velodyne sensor each with thousands of readings)

and very large collections of 3D point clouds. New sensors are appearing (i.e.

the Quanergy sensor used for the experiments in this Thesis) which are more

affordable but provide less resolution data captures, going down several orders

of magnitude in the number of 3D point readings that require novel processing

methods [213].

Our aim in this Thesis is to propose a hybridization of two well known point

cloud registration methods. Hybridization is akin to the composition of subsys-
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tems in circuit like systems. It can be done in series, parallel or interleaving

the systems in time. In this Thesis, we propose a serial hybridization where one

algorithm serves to provide a robust initial condition to the other. This Thesis

intends to show that it is possible to overcome the performance degradation of

registration methods often used with high density datasets when applied to low

density datasets.

The selected point cloud registration methods for the computational ex-

periments are Iterative Closest Point (ICP) [15], Coherent Point Drift (CPD),

Normal Distribution Transform (NDT) [16], and a novel Hybrid Registration

Algorithm (HRA) that combines ICP and NDT into a more robust algorithm.

4.2 Point Cloud Registration Method

Point cloud registration is the algorithm used to align two or more 3D point

cloud related to the same scene but referring to different coordinate systems. It

is composed of two steps:

(a) To find the correspondence between the points in one point cloud (the

moving) to the points in the other point cloud (the reference).

(b) To estimate the motion parameters that achieve optimal match of the mov-

ing points to the reference points after applying the correction.

If the motion is modeled by a rigid body or an affine transformation, then a

matrix transformation common to all points is estimated. If the motion is some

non linear deformation, then we have to estimate a flow field. For this Thesis

we are restricted to rigid body transformations, which are compositions of a

translation and a rotation. The transformation estimation process takes the

form of a minimization problem where the energy function is related to the

quality of the correspondence achieved.
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Algorithm 4.1 General template of point cloud registration algorithm.
Input: sequence of point clouds {N (t)}Tt=0 captured by the LiDAR
Output: overall point cloud M (T ), sequence of registered transformations
{Tt}Tt=1

For t = 0, . . . , T

1. N (1) (t)← remove ground plane from N (t)

2. N (2) (t)← remove ego-vehicle from N (1) (t)

3. N (3) (t)← down-sample N (2) (t)

4. If t = 0 then M (0) = N (3) (t); goto For

5. (Tt, et)← register Tt−1

(
N (3) (t)

)
to M (t− 1)

6. N (4) (t)← Tt
(
N (2) (t)

)
7. M (t)← merge

(
M (t− 1) , N (4) (t)

)

4.3 Generic SLAM Framework

Given a sequence of point cloud captures, the process of SLAM based on point

cloud registration methods is composed of the following steps:

1. Initialize the process with the first point cloud captured as the reference

point cloud.

2. For each of the ensuing captured point cloud, called moving point cloud:

(a) Find corresponding points of the following moving point cloud in the

reference point cloud.

(b) Estimate the optimal transformation matching the moving points to

the reference points. The motion is modeled by a rigid body, so

that a matrix transformation common to all moving point cloud is

estimated.

(c) Apply the transformation to the moving point cloud in order to put

them in the coordinate system of the reference point cloud.
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(d) Merge the corrected point cloud and the reference point cloud to

obtain a new set of reference points.

3. Compose the transformations to obtain the trajectory of the sensor.

Thus, the accuracy of the SLAM computations depends critically of the reli-

ability and efficiency of the method used to obtain the transformation for the

moving point cloud.

Algorithm 4.1 specifies a general template of the registration process. The

input to the algorithm is the sequence of point clouds recorded by the LiDAR

N (t); t = {0, . . . , T} while the sensor is being displaced through the scene.

The final result of the process is a global point cloud M (T ) that contains all

the recorded 3D points registered relative to the first acquired point cloud N (0)

coordinate system, through the estimation of the transformation matrix for each

time instant {Tt}Tt=1.

The first three steps of the algorithm are related to pre-processing, i.e.

the ground plane and vehicle removal, and sub-sampling the data to decrease

the computation time, improve accuracy registration and delete the outliers.

For each point cloud N (t) acquired at time t, firstly the ground plane is re-

moved by applying a segmentation, denoted N (1) (t). Secondly, the ego-vehicle

points are deleted, denoted N (2) (t). Thirdly, we down-sample the point cloud

to improve the processing efficiency, denoted N (3) (t). For the initial point

cloud, N (3) (0) becomes the global merged reference cloud M (0). For sub-

sequent time instants t > 0, the fourth step is to estimate the transforma-

tion Tt of the acquired data N (3) (t) previously pre-processed related to the

previous global point cloud M (t− 1). The transformation estimation pro-

cess takes the form of a minimization problem where the energy function is

related to the quality of the correspondence achieved. The estimated trans-

formation is applied to the point cloud previous to the down-sampling step
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Figure 4.3.1: Flow diagram of the registration algorithm. N(i)(t) is the point
cloud at time t after the i-th step of processing. M(t) is the overall point cloud
up after merging all the registered point clouds processed up to time t.

N (4) (t) = Tt
(
N (2) (t)

)
, which is used to obtain the new global registered point

cloud by merging M (t)← merge
(
M (t− 1) , N (4) (t)

)
.

Figure 4.3.1 presents a flow diagram of the general algorithm applied to

obtain the registration of the LiDAR point clouds for each time point t =

{0, . . . , T}.

4.4 Iterative Closest Point Method

The most popular and earliest point cloud registration method is the Iterative

Closest Point (ICP) proposed by Besl in 1992 [15]. This technique has been

exploited in many domains, giving rise to a host of variations whose relative

merits are not so easy to assess [162].

Given a point cloud1 P = {pi}Np
i=1 and a shape described by another point

1(The original paper includes the possibility to specify other primitives such as lines or
triangles with well defined distances to a point, but we will not consider them in this Thesis.)
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cloud X = {xi}Nx
i=1 the least squares registration of P is given by (q, d) =

Q (P, Y ), where Y = {yi}Np
i=1 is the set of nearest points from X to the points

in P , i.e.

pi ∈ P ; yi = arg min
x∈X
∥x− pi∥2 ,

denoted Y = C (P,X), and operator Q is the least squares estimation of the

rotation and translation mapping P to Y using quaternion notation, thus q =

[qR | qT ]
t is the optimal transformation specified by a rotation quaternion qR

and a translation qT , and d is the registration error. The energy function

minimized to obtain the optimal registration is

f (q) = 1

Np

Np∑
i=1

∥yi −R (qR) pi − qT ∥2 ,

where R (qR) is the rotation matrix constructed from quaternion qR. The iter-

ation is initialized by setting P0 = P , q0 = [1, 0, 0, 0, 0, 0, 0]
t, and k = 0.

The algorithm iteration is as follows:

(1) compute the closest points Yk = C (Pk, X),

(2) compute the registration (qk, dk) = Q (P0, Yk),

(3) apply the registration Pk+1 = qk (P0), and

(4) terminate the iteration if the results are within a tolerance: dk − dk+1 < τ .

A drawback of this registration method is that it can fall in a local minimum,

that is the iteration is finished because of the tolerance condition but the results

are not as expected. Figure 4.4.1 shows the structure of the algorithm as flow

diagram of its basic iterations.
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Figure 4.4.1: Flow diagram of the ICP point cloud registration algorithm.

4.5 Coherent Point Drift Method

The Coherent Point Drift (CPD) [145, 131] registration method considers the

alignment of two point sets as a probability density estimation problem. The

first point set X = {xi}Ni=1 is considered the data samples generated from the

Gaussian mixture model (GMM) whose centroids are given by the second point

set Y = {yi}Mi=1. Therefore, the CPD registration tries to maximize the like-

lihood X as a sample of the probability distribution modeled by Y after the

application of the transformation T (Y, θ), where θ are the transformation pa-

rameters.

The GMM model is formulated as

p (x) = ω
1

N
+ (1− ω)

M∑
m=1

1

M
p (x |m )

assuming a uniform distribution for the a priori probabilities P (m) = 1
M , and

adding an additional uniform distribution p (x |M + 1) = 1
N to account for noise

and outliers. All Gaussian conditional distributions are isotropic with the same
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variance σ2, i.e.

p (x |m ) =
(
2πσ2

)−D/2 exp
(
∥x− ym∥2

2σ2

)
.

The point correspondence problem is equivalent to selecting the centroid ym

with maximum a posteriori probability P (m |xn ) for a given sample point xn.

The CPD tries to minimize the negative log-likelihood

E
(
θ, σ2

)
= −

N∑
n=1

log
M∑

m=1

P (m) p (x |m )

by an Expectation-Maximization (EM) algorithm. The E step corresponds to

solving the point correspondence problem using the old parameters, by comput-

ing the a posteriori probabilities with the old parameters P old (m |xn ). Let it

be

poldn,m = exp
(
−1

2

∥∥∥∥∥xn − T
(
yn, θ

old
)

σold

∥∥∥∥∥
)
,

then

P old (m |xn ) = poldn,m

(
M∑
k=1

poldk,m + c

)
.−1

The M step is the estimation of the new parameters minimizing the complete

negative log-likelihood

Q = −
N∑

n=1

M∑
m=1

P old (m |xn ) log (Pnew (m) pnew (x |m )) .

For rigid transformations, the objective function takes the shape:

Q
(
R, t, s, σ2

)
=

1

2σ2

N,M∑
n,m=1

P old (m |xn ) ∥xn − sRym − t∥2 + NpD

2
logσ2,
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such that

RT R = I, det (R) = 1.

Closed forms for the transformation parameters are given in [145].

4.6 Normal Distributions Transform Method

The key of the NDT [16] method is the data is representation. The space around

the sensor is discretized into regular overlapped cells. The content of each cell

having more than 3 points is modeled by a Gaussian probability distribution of

mean:

q =
1
n
∑
i

xi,

and covariance matrix

Σ =
1

n

∑
i

(xi − q) (xi − q)t ,

so that the probability of a LiDAR sample falling in the cell is of the form:

p (x) ∼ exp
(
− (x− q)t Σ−1 (x− q)

2

)
.

Given an initial rigid body transformation T (x; p0), where p is the vector

of translation and rotation parameters, a reference point cloud {xi} modeled

by the mixture of the cells Gaussian distributions, and the moving point cloud

{yi}, the iterative registration process is as follows: the new laser sample points

yi are transformed into the reference frame of the first cloud

y′
i = T (yi; pt−1) ,
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Figure 4.6.1: Flow diagram of the NDT point cloud registration algorithm.

where we find the cell where it falls and use its parameters (q,Σ) to estimate

its likelihood p (y′
i). The score of the transformation is given by

score (p) =
∑
i

p (y′
i) .

The maximization of the score is carried out by gradient ascent using New-

ton’s method, i.e. pt = pt−1 +△p. The parameter update is computed solving

the equation H△p = −g, where H and g are the Hessian and the gradient of

the −score (pt−1) function, respectively. Closed forms of H and g are derived

in [16] for the 2D case. An extension to 3D is described in [135]. Figure 4.6.1

shows the flow diagram of the NDT algorithm.

4.7 Hybrid Point Cloud Registration Algorithm

In this section, Hybrid Registration Algorithm (HRA) is presented, which com-

bines ICP and NDT methods because the former method generates a better

surface, i.e. with greater point density than NDT, but it is not able to properly

register point sets at turning sections as the latter method. Our hybrid algo-

rithm uses initially the ICP method, changing to the NDT method when the

registration error becomes higher than a threshold.
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Algorithm 4.2 The Hybrid Registration Algorithm (HRA) combining both
ICP and NDT registration methods.
Input: sequence of point clouds {N (t)}Tt=0 captured by the LiDAR
Output: overall point cloud M (T ), sequence of registered transformations
{Tt}Tt=1

Method = “ICP”
For t = 0, . . . , T

1. N (1) (t)←remove ground plane from N (t)

2. N (2) (t)← remove ego-vehicle from N (1) (t)

3. N (3) (t)← downsample N (2) (t)

4. If t = 0 then M (0) = N (3) (t); GOTO step 1

5. (Tt, et)← register Tt−1

(
N (3) (t)

)
to M (t− 1) using Method

6. If et > θe then Method = “NDT”

7. N (4) (t)← Tt
(
N (2) (t)

)
8. M (t)← merge

(
M (t− 1) , N (4) (t)

)

Algorithm 4.2 presents a description of the proposed hybrid registration

method. The input of the algorithm is the sequence of point clouds recorded

by the LiDAR N (t) ; t = {0, . . . , T}. The point sets are obtained while the

LiDAR sensor is being displaced manually in the environment according to the

approximate path in Figure 3.3.2. The final result of the process is a global point

cloud M (T ) that contains all the recorded 3D points registered relative to the

first acquired point cloud N (0), and the estimation of the LiDAR recording

positions relative to the initial position given by the composition of the point

cloud registration transformations estimated up to this time instant {Tt}Tt=1.

The process of each point cloud is as follows:

• For each point cloud N (t) acquired at time t, firstly we remove the ground

plane applying a segmentation, denoted N (1) (t).

• Secondly we remove the ego-vehicle points, denoted N (2) (t).
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• Thirdly, we down-sample the point cloud to decrease the computation

time and improve accuracy registration, denoted N (3) (t).

• For the initial point cloud, N (3) (0) becomes the global merged reference

cloud M (0).

• For subsequent time instants t > 0, the fourth step is to estimate the

transformation Tt of the acquired data N (3) (t) optimally registered to the

previous global point cloud M (t− 1). For this estimation, we may use

ICP or NDT methods.

• We then apply this transformation to the acquired point cloud previous

to downsampling N (4) (t) = Tt
(
N (2) (t)

)
, which is used to obtain the new

global registered point cloud by merging M (t)← merge
(
M (t− 1) , N (4) (t)

)
.

Our hybrid strategy consists in using the ICP method in the initial steps of

the algorithm, up a time instant when the registration error meets a given

threshold, after this time point the system shifts to use the NDT method to

continue registration of all remaining point clouds. The rationale is that the

ICP acts as a good initial estimation for the ensuing NDT steps, as will be

demonstrated in the results section below.

4.8 Conclusion

In this Chapter we have given the formal description of the benchmark SLAM

algorithms and a new hybrid algorithm proposal that combines the best fea-

tures of the ICP and NDT algorithms. These algorithms are validated over

the in-house datasets described previously. Next Chapter provides results and

discussions.
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Chapter 5

Results of SLAM

experiment

This Chapter reports the results of the computational SLAM experiments car-

ried out over the data collected as reported in Chapter 3. Section 5.1 reports

the results achieved by the three classical SLAM approaches over the in-house

dataset #1. Section 5.2 reports the results of the classical algorithms and our

proposed hybrid model over the in-house dataset #2. Section 5.3 gives some

conclusions on the experimental results.

5.1 Results over the In-house Dataset #1

Dataset #1 has been used as preliminary benchmark for SLAM algorithms.

As discussed in Chapter 3, we found that Deep Learning approaches did not

perform correctly over this kind of sparse LiDAR data. In this Section we report

the results achieved with the classical algorithms over this dataset.

The measurement of the quality of the registration is the Root Mean Squared

53
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Error (RMSE) between two points clouds after carrying out the registration pro-

cess applying the estimated transformation. Figure 5.1.1 presents the evolution

of the registration error achieved with the generic point cloud registration Al-

gorithm 4.1 for the point clouds recorded along the path shown in Figure 3.3.1

using alternatively the three classical SLAM methods described in Chapter 4,

namely ICP, CPD, and NDT. The plot scale is logarithmic in order to be able to

represent the three error plots in the same scale. The NDT algorithm gives the

minimal error all along the path. The error of both NDT and CPD registration

methods remains bounded, however the error of the ICP method explodes after

a point in the trajectory, specifically the turning point at the end of the main

hallway in Figure 3.3.1.

Figure 5.1.2 (right) shows the overall registered cloud point obtained at the

end of the SLAM process, and the estimated trajectory (visualized as white

dots). After some point in the trajectory, the ICP registration loses track and

gives almost random trajectory tracking results. Figure 5.1.2 (left) shows the

results of the ICP registration up to the turning point, which are comparable

with the results of the other algorithms.

Figure 5.1.3 (right) shows the results of the CPD algorithm in terms of

the registered and merged global cloud of points and the trajectory estimation

(white dots). It can also be appreciated in the figure 5.1.3 (left) that the SLAM

process gets lost after the path turning point, however the registration of point

clouds does not become unwieldy.

Finally, Figure 5.1.4 shows the results of the NDT algorithm. The trajectory

(white dots) is quite accurate to the actual path followed by the sensor. The

trajectory turning point was in fact as smooth as shown in the figure. The

overall registered and merged point cloud has a nice fit of the actual hallway

walls, as can be appreciated in Figure 5.1.5, including a communication switch
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Figure 5.1.1: Evolution of the registration error (log plot) for NDT (blue dots),
CPD (green dots), and ICP (red dots) over in-house dataset #1.

closet signaled in the figure with an arrow, which is not present in the original

floor plan.

5.2 Results over the In-house Dataset #2

Figure 5.2.1 plots the time evolution of the registration error for ICP, NDT,

and HRA setting the threshold to θe = 0.25. Each point corresponds to the

registration error of a new point cloud. The proposed HRA shows the best

performance after the initial phase, where the results of all three methods are

mixed up. The peaks in the plot at iterations 500, 1500 and 2500 correspond

to the turning points in the path, where all methods suffer due to the high

rotational motions of the sensor. Table 5.1 gives a summary of the numerical

registration errors, namely the maximum instantaneous RMSE, its median along

the path, and the cumulative error.

Figures 5.2.2, 5.2.3, and 5.2.4 show the trajectory estimation and the pro-

jection of the reconstructed surface on the ground plane for the ICP, NDT, and
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Figure 5.1.2: Registration of the cloud points before reaching the turning point
(left) over in-house dataset #1. Estimated trajectory (white dots) and registered
cloud of points using ICP (right).

Figure 5.1.3: Registration of the cloud points before reaching the turning point
(left) over in-house dataset #. Estimated trajectory (white dots) and registered
cloud of points using CPD (right).



5.2. RESULTS OVER THE IN-HOUSE DATASET #2 57

Figure 5.1.4: Estimated trajectory (white dots) and registered cloud of points
using NDT over the in-house dataset #1.

Figure 5.1.5: Projection of the NDT registered point cloud of in-house dataset
#1 on the plan of stage 3 of the building.
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Figure 5.2.1: Time evolution of the registration RMSE for NDT (blue dots),
ICP (red dots), and HRA methods (green dots).

Table 5.1: Performance of ICP, NDT, and HRA methods along the experimental
path, given by maximum and median instantaneous error, and the cumulative
error.

ICP method NDT method HRA method
Maximum RMSE 0.4136 0.2841 0.2522
Median RMSE 0.0835 0.0589 0.0554
Cumulative RMSE 265.29 187.21 176.20

HRA registration methods, respectively. In Figure 5.2.2 the surfaces defined by

the registered are aligned with the walls of the plane until the sensor reaches

second bend. Afterwards, the trajectory diverges from the nominal path and

the surfaces lose alignment. For the NDT method, though its error performance

is better than that of the ICP method, in Figure 5.2.3 it can be appreciated

that, after the first turning point, the reconstructed surfaces are misaligned with

the actual walls of the plan, showing path divergence earlier than ICP. Finally,

the HRA trajectory and reconstruction results provided in Figure 5.2.4 show a

much better fit of the reconstructed surfaces to the walls of the plane along the

whole trajectory, which matches better the nominal path.
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Figure 5.2.2: Projection of the ICP registered point cloud on the plan of stage
3 of the building with the estimated trajectory over in-house dataset #2.

Figure 5.2.3: Projection of the NDT registered point cloud on the plan of stage
3 of the building with the estimated trajectory over in-house dataset #2.
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Figure 5.2.4: Projection of the HRA registered point cloud on the plan of stage
3 of the building with the estimated trajectory over in-house dataset #2.

5.3 Conclusion

In this Chapter we report a comparison between three registration methods for

3D point clouds, namely the Iterative Closest Point, Coherent Point Drift and

Normal Distributions Transform. To collect point sets, we have located the M8

Quanergy LiDAR sensor on a manually driven mobile platform through the third

floor of the Computer Science School of the UPV/EHU in San Sebastian. The

registration algorithm followed includes preprocessing (detect and remove ego-

vehicle and floor, and downsample), registration, transformation and merger

point cloud. For each method described in Chapter 4, we have obtained the

registration error, the estimation of the path traversed by the sensor, and the

reconstructed point cloud. For the ICP and CPD methods, the error is larger

than for the NDT method over the in-house dataset #1. Besides, after the turn-

ing point in the nominal path, ICP and CPD obtained path and resulting point

cloud are incorrect. NDT registration obtains coherent experimental results and

an accurate trajectory compared with the nominal path followed. Therefore, we



5.3. CONCLUSION 61

apply the ICP and NDT for the in-house dataset #2 with suboptimal results,

hence we propose a novel hybrid algorithm HRA that improves over both ICP

and NDT over this dataset.
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Chapter 6

State of the Art of

Computational Ethology

This Chapter provides a short introduction to Computational Ethology in order

to set the stage for the computational experiments referred in the second part

of this Thesis. Section 6.1 provides an introduction to the Chapter. Section

6.2 comments on the diversity of sensors that are used in Computational Ethol-

ogy. Section 6.3 reviews the most popular computational methods found in the

literature. Finally, Section 6.4 gives some conclusions and future perspective.

6.1 Introduction

Ethology is defined as the discipline that studies the animal behavior in terms of

its phenomenological, causal, ontogenetic and evolutionary aspects, in order to

provide answers to the causes and development that animal behavior undergoes,

as well as to understand how it is performed [8], bearing in mind that the

behavior is understood as the set of muscular responses of a living being as a
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consequence of an external stimulus [73] and internal motivation.

In this way it is possible to extract behavioral characteristics and study

their alterations due to diseases or disorders. In addition, it is now possible to

generate animal models with genetic modifications that provide study subjects

with anatomy, physiology or response to a pathogen that are sufficiently similar

to humans to be able to extrapolate the results obtained to them. The most

commonly used models in research are rodents, especially mice and rats, zebra

fish, amphibians and reptiles, birds and other small animals.

Early Ethology studies were conducted visually, describing what researchers

saw in each experiment qualitatively. Later on, they began to evaluate certain

behaviors on the basis of some predefined criteria, thus beginning a quantitative

approach. However, this new methodology had many drawbacks:

• Time-consuming: The time needed to pre-process an experiment can re-

quire up to three times its actual duration.

• Humdrum: Behavior observation and annotation is a very repetitive task

that must be performed for hours during several weeks. At a certain point,

the observer is tired and performs the task mechanically losing ability to

notice new patterns.

• Difficult to transfer knowledge: When it is not possible to express it in

plain words, different team members may make different annotations for

the same experiment. This makes the process strongly subject to the

judgment of the scientist and difficult to standardise and reproduce in

other laboratories with different equipment.

• Limited to the visual acuity of the observer: If there are several animals,

it is difficult to pay attention to the behavior of all of them at the same

time.
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• Low-dimensional. Through human observation it is not possible to anno-

tate a large number of variables for each behavior.

To address all these issues, a new discipline called Computational Ethology

emerged, which is defined as the study of animal behavior using Computer

Vision and Artificial Intelligence (AI) techniques to help quantify and anal-

yse behavioral patterns [44]. This is usually done by studying animals moving

in a free-ranging environment and analysing specific behaviors or calculating

ethograms, which describe how often each action is performed and the prob-

ability of the next action being performed, in order to try to find out how

decision-making is carried out [8]. Thus, Computational Ethology allows the

incorporation of advances in Computer Vision and AI in the study of animal

behavior, providing the following advantages:

• Decrease the processing time of experiments, because of the algorithms

implementation that automatically extract relevant information from ex-

perimental records.

• Eliminate the limitations of the observer, allowing the processing of several

animals at the same time with increased accuracy.

• Increase the dimensionality of behavior measurements, extracting more

characteristics from the same behavior it is possible to increase the infor-

mation and, therefore improve its analysis.

• Standardise the characteristics of behaviors, since it is possible to describe

behaviors quantitatively thanks to the increase in information, and the

standardization of the capture instruments.
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6.2 Sensors

This section will describe the most commonly used physical devices in Com-

putational Ethology, i.e. sensors, which are of very different types such as

RGB, infrared and depth video cameras, microphones, RFID (Radio Frequency

Identification) antennas, pressure sensors, accelerometers, magnetometers and

gyroscopes. Currently, RGB video cameras are the most used sensors to record

experiments in open field arenas [207, 139], operant conditioning chambers [39],

and in animal natural environment [58]. The systems can be composed of a

single RGB camera [30] or a multi-camera system[182, 69, 12]. Low cost config-

urations with video cameras use a Raspberry Pi to carry out the recordings and

store the data for further processing [126]. Recent systems featured depth cam-

eras providing 3D measurements of the kinematics of the animals [140]. This

type of camera can be used both to track animals and for behavioral detection

and classification [71, 163]. Infrared cameras allow for monitoring the behav-

ior of animals during the day and during the darkness of the night [29], and

as a non-invasive system in group-housed animals [138]. Specific examples of

their application are the study of monkeys hunting fish [186], and the study of

Japanese eels to understand the environmental conditions that must be met for

them to climb a low-height vertical weir [112]. In addition, infrared cameras

have been used to obtain high-resolution images allowing precision tracking of

certain parts of a rat’s body [156]. Infrared sensors are also used to track an

animal’s movements and see when it is approaching a certain object [19].

Other sensors also widely used in Computational Ethology are inertial sen-

sors and accelerometers, which can be placed on the head of animals to study

sensorimotor responses in pigeons [6], mice [193] and fox squirrels [66].

Though they have reduced precision, RFID antennas are also used to track

animals because of their robustness against visual occlusions and the possibility
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to make experiments in greater space. These antennas have been applied on

rodents to track each animal while moving freely in the study of the "Individu-

ality Paradigm” [102], and on broilers to identify, describe and quantify a wide

range of behaviors in combination of video recording [52].

Pressure sensors are emerging for behavioral studies because they are non-

invasive and allow animals to move without restriction. One example is pressure

sensor based on piezoelectric materials, which can detect animal movements

for further processing and analysis. These platform sensors also offer a high

sensitivity for detecting pressure changes, making it possible to detect freezing

episodes, breathing and heartbeats in mice [27]. Another example is the use of

wearable pressure sensors to study pressure changes in the jaw movements of

cattle [31].

In addition to movements, audio signals captured by microphones allow for

the study of the vocalizations that certain animals emit to communicate with

each other [146, 195]. This can be used to measure the response to stress

[42], or analyse their communication during mating [83], or while performing a

task [174]. Specific software applications exist to detect and classify ultrasonic

vocalizations such as DeepSqueak [40] or BootSnap [1].

6.3 Methods

In Computational Ethology, techniques developed in the field of Computer Vi-

sion and AI are used to process the data collected during experimentation. To

study the trajectory and locomotion of an animal, tracking algorithms segment

the animal with respect to the background obtaining the center of mass and

orientation, among others properties, automatically. To study other behaviors

such as grooming, resting or rearing, it is necessary to label these behaviors

firstly. This task can be performed using a supervised approach, where the



68 CHAPTER 6. STATE OF THE ART OF CE

behaviors to be studied are indicated in the algorithm that generates the AI

model, and an unsupervised approach, where the data is fed into an algorithm

to extract patterns, which is very interesting for highlighting behaviors that

were not previously foreseen by the scientist or that escape the human eye.

These algorithms study temporal dynamics in the time or frequency domain,

where the former studies how data vary as a function of time and the latter how

cyclic movements vary as a function of their frequency [44]. In the following we

discuss current approaches and tools for the two fundamental tasks of tracking

and behavior classification.

6.3.1 Tracking

DeepLabCut [141] is a markerless motion tracking system based on transfer

learning that can be easily tailored to the specific experimental setting. Re-

cently, it has been used for measuring monocular ability of mice to assess dis-

tances [155, 10], the behavioral risk assessment of mice [201], study of novelty

induced behavioral dynamics in threat prediction [5], the management of fish

passage in rivers [134], kinematics of time-varying lumbar flexion-extension [74],

behavioral profiling of rodent stroke recovery [205], X-ray video analysis of ro-

dent locomotion [107], cardiac physiology assessment in zebra fish [184], multi-

animal pose estimation and tracking [114], pose estimation of speech articulators

[208], gait analysis in stroke survivors [129]. DeepLabCut can be also used as

the basis for the development of dedicated systems, such as the Anipose system

for estimation of 3D pose [101]. In addition to estimating the 3D pose, it enables

the camera calibration, the filtering of the trajectories and allows the visualisa-

tion of the tracked data. Some independent comparative evaluations found that

markerless tracking systems are still requiring improvements in order to achieve

the same tracking accuracy as current marker based systems [147], while oth-
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ers found good agreement between markerless system and marker based gold

standard motion tracking in specific tasks [53, 197, 181].

Bonsai is a programming framework for neuroscience experimentation that

allows data acquisition, experiment control, data processing, and pose tracking

[130]. Bonsai also allows the integration of one or more sensors such as cameras

and Local Field Potential (LFP) recording thanks to its Open Ephys acquisition

system [187]. This open-source software has given rise to several products in

the field of neuroscience, such as the GoFish platform, which uses Bonsai to

experiment with fish [4], rodents [37] and flies [80]. It has been used to study

the impact of feeding on the organism neural systems [164], how chronic stress

affects the body [171], the frailty associated with Alzheimer’s disease [113], and

mice torpor [85].

Apart from DeepLabCut and Bonsai, with the advent of AI and computing

capacity, a large number of tracking and classification algorithms have been

developed for animal experimentation based on machine learning and neural

networks. The best known and most widely used is the JAABA application

that uses a semi-supervised machine learning algorithm for automatic annota-

tion of animal behavior [97]. Apart from this, there are different tools to classify

behaviors using machine learning and Computer Vision [71] or also to detect

behaviors based on heuristic algorithms such as BehaviorDEPOT, a tool that

uses statistics based on animal dynamics and posture [65]. There are also neural

networks that identify the genetics of a mouse by analyzing grooming behavior

[72]. And with more computational capacity, algorithms based on Deep Learn-

ing can be used, for instance DeepEthogram classifies behaviors in a supervised

manner from raw pixels [18] and another Deep Learning-based algorithm that

estimates the pose of broiler chickens [57]. Convolutional networks are also very

useful for classification and behavior detection using frames and currently also
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3D convolutional networks for behavior automatic classification [128] and for

grooming detection of mouse [173]. However, transfer learning is still used to

train previously configured networks, thus decreasing the amount of data and

computation time [95].

Another popular tool is LEAP [159], which also provides a pose estimation

and tracking system based on deep neural networks. It follows 3 steps:

1. Registration and alignment of centroid to improve the efficiency and ac-

curacy,

2. Labeling and training of images to create the ground truth to train the

neural network and helps the system to find the body parts,

3. Pose estimation itself .

However, LEAP has been superseded by SLEAP (Social LEAP) that is able to

track groups of animals in order to study social interactions between individuals.

This social tool provides animal poses in a multi-animal system experimentation

[158] using a type of convolutional neural network called DenseNet, where all

layers are connected directly to each other [87]. DeepPoseKit [76] is another

recent toolkit for animal pose estimation based on Stacked DenseNet, which is

a variant of DenseNet.

6.3.2 Behavioral Classification

There are many open-source applications to annotate animal behaviors auto-

matically based on AI methods, which can be either supervised or unsupervised.

In the former type, the user has to tag the data to train the models, whereas in

the latter type there is no need for prior labeling, reducing user bias.

A well-known software resource for behavior classification is JAABA [97],

which is an open-source application based on a semi-supervised machine learn-
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ing algorithm, where the user tags the behaviors of a part of the dataset and

then the algorithm is able to label the rest of the dataset. Moreover, this sys-

tem is used as support for human annotators in the manual process to obtain

the ground truth to train other behavior classifiers. Events that occur during

experiments with more than one animal can also be labeled [148]. Allowing free

interaction among animals is a desirable feature. The Mouse Action Recognition

System (MARS) [176] is an automated method for pose estimation and behavior

quantification in couples of mice that can interact freely. MotionMapper [14]

is another classical system for mapping animal actions from raw images. Once

the images are segmented and aligned, a Morlet wavelet is applied to obtain the

spectrogram for each postural mode. After a normalization, a watershed trans-

form isolates the peaks to obtain behavioral regions where can be differentiate

several movements such as fast leg movements, slow movements, wing move-

ments, posterior movements, locomotion gits and anterior movements. This

way, the behavior between males and females can be compared.

Deep Learning techniques are also extensively used for behavior recogni-

tion. DeepEthogram[18] classifies behaviors from raw pixels by applying a deep

supervised learning algorithm composed of two convolutional neural networks

extracting spatial and dynamic flow features. This classifier is widely used, for

instance to extract walking or grooming events [63] or small-scale movements

such as rat liking after having eaten tasty food [89]. In addition, transfer learn-

ing is very useful for building models from previously trained networks as it

requires less computational time and less data [95].

There are unsupervised methods such as B-SOiD [86] that identifies behav-

iors without user interaction. Firstly, it extracts pose relationships to identify

patterns and find the optimal number of cluster groups. Then, a random for-

est model is trained to predict categories of behaviors. This algorithm has been
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referenced in several works to classify repetitive behaviors using data from track-

ing beads, where the system is fed with data on distances, angles and velocities

[119].

Unsupervised deep learning approaches have also found application in be-

havior categorization. The Selfee [94] method for self-supervised feature ex-

traction can also be used as input to the B-SOiD algorithm. Selfee uses a

convolutional neural network to extract features from raw video recordings to

feed other classification algorithms. VAME [132] is another unsupervised deep

learning framework that identifies behavioral motifs from bottom-up images.

This algorithm uses DeepLabCut to estimate the pose of the animal and once

trajectories are obtained, a recurrent neural network uses these trajectories to

obtain the motifs. Finally, VAME results can be clustered with the k-means

algorithm [171] in order to extract the relevant behavioral motifs. PyRAT [45]

is an open-source python library to analyse animal behavior by estimating trav-

eled distance, speed and area occupancy. The unsupervised algorithms used in

this library are hierarchical agglomerative clustering and t-distributed stochastic

neighbor embedding (t-SNE) for classification and clustering.

Apart from this, there are tools to detect behaviors based on heuristic algo-

rithms such as BehaviorDEPOT, which uses statistics based on animal dynamics

and posture [65]. There are also tools, where classification is carried out by us-

ing video recordings and a SVM is fed with a 32-dimensional feature vector

that indicates the relative frequency of each of the 8 behaviors of interest to be

analysed [93]. Finally, a k-NN is used to classify 7 behaviors, compute the total

distance traveled and the percentage of time spent in the center from RGB-D

images [71] .
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6.4 Conclusion and Future Perspective

This Chapter includes an overview of the sensors currently used in experimenta-

tion, where the best known are RGB video and depth cameras, pressure sensors,

RFID antennas, accelerometers and microphones to record mice vocalizations.

This review also includes a compilation of the most widely used and known

methods and algorithms in Computational Ethology for both tracking and clas-

sification of behaviors. Based on machine learning and Deep Learning, these

methods can follow two basic learning approaches: supervised or unsupervised.

In the first one, the data is previously labeled by the scientist and in the second

approach the data is processed to look for common patterns of behavior and

even discover unforeseen ones. While supervised methods may achieve greater

precision in tracking, unsupervised methods have the advantage of not requiring

labeled inputs in order to obtain relevant behavior categories.

Although the levels of precise measurement of behaviors achieved with cur-

rent methods is very high, there are still limitations to overcome, such as the

extension of the methods to large experimental arenas, which resemble natural

spaces more closely.
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Chapter 7

Materials for a

Computational Ethology

Experiment

This Chapter describes the source of data for the computational experiments

testing several machine learning approaches to answer the Computational Ethol-

ogy questions posed over the specific capabilities of a pressure sensor. These

data were provided by Prof. Xavier Leinekugel, who maintains the property of

the data, therefore all requests for data access should be addressed to him.

Section 7.1 provides an introduction to the Chapter and the definition of the

problem addressed by Computational Ethology. Section 7.2 provides a summary

description of the animal models. Section 7.3 provides a summary description

of the behavior recording environment. Section 7.4 provides a description of

the data processing leading to the feature extraction that is the input for the

machine learning algorithms applied subsequently. Finally, Section 7.5 provides

75
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details on the classification approaches that have been explored in this study.

7.1 Introduction and Problem Statement

Ethology, which is the study of behavior, is key to understand the living things

from a biological point of view, by characterising the behavior in natural and

artificial environments [8]. Many of these studies are currently carried out in

open-field cages where animals can move freely while their behavior is observed

and analysed for characterization and quantification. In this way, differences in

the behavior of subjects with distinct phenotypes can be found.

To record the animal behavior during these experiments there are a wide

variety of sensors that can be either invasive, such as electroencephalogram

(EEG), electrocardiogram (ECG) and inertial sensors surgically implanted in

the animals or non-invasive, such as RGB, depth and infrared video cameras,

and pressure sensors.

In the study reported here, data came from a recording system consisting of

a top camera and a platform endowed with piezoelectric pressure sensors. The

general aim of the experiments is to differentiate mice phenotypes on the basis

of the recorded data. This study uses a Computer Vision-based algorithm to

label mice behavior periods (such as locomotion, standing, or grooming) in an

straightforward way. These periods are further used to segment the signal from

the pressure sensors for strain or behavioral recognition of the mice.

There are nowadays many works that seek to differentiate phenotypes by

analysing differences in specific behaviors such as grooming [72] or locomotion

[99] or using combinations of them (drinking, rearing, grooming, eating, ...)

[93][168]. However, to extract the periods of time in which the animal performs

these behaviors is long and time-consuming [44] and although there are many

applications in the literature that obtain these periods automatically, using
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modern Artificial Intelligence techniques and algorithms, it is still necessary to

analyse a large part of the behaviors manually in order to train these models.

In this work we have chosen to analyse the animal models only during the

locomotion periods, which are easily obtained without prior training by means

of the images obtained by video camera. Once the locomotion periods are

segmented, the next step is to obtain the features that characterise the behavior

and compare them for different strains. This can be done either in the time

or frequency domain. In this work we have chosen the frequency domain by

calculating the spectrogram of the piezoelectric signal for the periods in which

the animal is moving.

In summary, the problem statement is as follows: Is it possible to discrimi-

nate animal models using the pressure sensor signal corresponding to locomotion

periods in an open field cage experiment.

This problem statement can be further refined into the following questions:

• Which are the appropriate features to be used for the classification task?

• How will we build up the datasets for the validation of the feature extrac-

tion and classification models?

• What are the duration of the recordings that can be useful for this task?

• Which classifiers achieve better results? We will be carrying out an ex-

haustive exploration of the performance

7.2 Animal Models

The computational experiments were carried out over data (camera and pres-

sured signal recordings) recorded with 12 mice belonging to two different strains:
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• 7 wild-type (WT)1 mice with a total duration of recordings of 4 hours and

20 minutes

• 5 transgenic Fmr1-knockout (Fmr1-KO)2 mice with a total duration of

recordings of 4 hours and 20 minutes

All the recording took place during the light period and it was the first time

these animal models were in contact with the recording system. All animals

were bred in the laboratory animal facility in collective cages, and transferred

to individual cages for the duration of the experiments. Animals were kept on a

12 h/12 h light/dark cycle, provided with nesting material and food and water ad

libitum. All experiments were performed during the light period under constant

mild luminosity (60-70 Lux). All experimental procedures were performed in

accordance with EU directives relating to the protection of animals used for

experimental and scientific purposes, in accordance with the reference to work

[27].

7.3 Behavioral Data Acquisition

The Phenotypix platform [27] was used to record the experiments by Prof.

Leinekugel research team. It is composed of an opaque-walled cage and a base

resting on several piezoelectric pressure sensors with a sampling rate of 20 kHz.

This platform is mounted on a table supported over a pressured air mechanism

to filter out motion noise due to environment vibrations, making the sensor

more sensitive and accurate. A Logitech HD Webcam C270 video camera is

placed on top of the cage to record the experiment at 25 fps as shown in figure

7.3.1.
1Wild-type gene is a term used to describe a gene when it is found in its natural, non-

mutated (unchanged) form.
2Fmr1-knockout (Fmr1-KO) mice may be useful for studying behavioral and synaptic ab-

normalities associated with Fragile X Syndrome.
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Figure 7.3.1: The Phenotypix platform during a recording session.

Animals were introduced individually into the platform and the walls and

cage were cleaned with 70% ethanol before each recording. To visualise the

piezoelectric signal obtained during the recordings, Spike2 software (CED, Cam-

bridge, UK) was connected to a computer where the data were stored for later

analysis. At the same time the videos were recorded with the top camera and

stored separately from the signals. The data were processed with Bonsai [130],

MATLAB (Mathworks, Natik, MA, USA) and Python [191]. The length of the

recordings range from 20 minutes to 1 hour.

7.4 Data Processing

Once the data are collected after the acquisition phase, they are processed to

extract the features for the classification algorithms. The pipeline of this process

is shown in figure 7.4.1 and is described in detail below:

1. Check whether the video has the correct format and duration. If not the

multimedia framework ffmpeg [189] is used to change the video format

and correct its duration by changing the frame rate. This framework can

benefit from GPU acceleration and its functions can be automated with

Python or MATLAB scripts.
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Figure 7.4.1: Data processing pipeline.

Figure 7.4.2: Bonsai pipeline for video processing.
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2. Compute the x and y position of the animal centroid through videos using

Bonsai software carrying out the steps shown in figure 7.4.2:

(a) Apply an affine transformation to align the video with the window

frame.

(b) Crop the video to center the region of interest to the platform on

which the animal will move. This way we can delete all the space out

of the recording system.

(c) Apply an binarization to change colors to gray scale. This step fa-

cilitates the animal segmentation. The function checks if the color

is darker than a predefined threshold to paint the pixel white and

otherwise black. The result is an image in black and white where

the animal is white and the background is in black. In case there are

objects apart from the animal, these object will be seen in white too.

(d) Find contours based on the color changes.

(e) Take binary region and select the largest one to avoid other objects

out of interest.

(f) Compute the centroid of the largest binary region in pixels.

(g) Convert centroid from pixels to cm by using a proportional relation-

ship taking into account the size of the recording platform.

3. Smooth the x and y centroid computing the average of 3 consecutive

points. This eliminates possible positional errors and filter the trajectory

of the animal.

4. Synchronize the time scale from of the centroid and the piezoelectric signal,

taking into account the time offset between both time scales and skipping

the first seconds of the video before the animal appears on the recording

platform.
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5. Apply a locomotion filter to detect periods when the animal is walking

using a MATLAB script with a minimum velocity of 2.5 cm/s and a min-

imum distance of 2.5 cm for each period.

After obtaining the locomotion periods, the spectrograms of the piezoelectric

signal can be calculated in two different ways:

• the spectrogram is calculated independently for each of the pressure signal

chunks corresponding to each locomotion period detected on the video, or

• the spectrogram is calculated for the whole pressure signal, and chunks of

the spectrogram are extracted corresponding to each locomotion period

detected on the video.

In the first approach, the spectrogram will be calculated in isolation without

taking into account the surrounding behaviors, while in the second approach,

the spectrogram will be influenced by the previous and subsequent behaviors.

For both approaches, the spectrogram can be computed using the Chronux

library3, the Signal Processing Toolbox of MATLAB, and the graphic software

Sonic Visualizer. Specifically, the spectrogram is computed with Chronux and

MATLAB libraries when dealing with the segmented pressure signal chunks

corresponding to the locomotion periods. For the second approach, the spectro-

gram computed by Sonic Visualizer is used in addition to Chronux and MAT-

LAB spectrogram routines. Besides, spectrogram images are also obtained to

compare the three methods using transfer learning.

In the Chronux library, tuning parameters are window size, window step,

number of tapers, and frequency of interest. The window size is defined as how

long the number of samples is in every computation. The window step is the

size of the displacement to take the next window sample. Modifying the number
3http://chronux.org/

http://chronux.org/
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Table 7.1: Parameters for spectrogram computation with Chronux library.
Parameters Value 1 Value 2 Default values

Window size (s) 1 2 -
Windows step (s) 0.1 0.2 -

Tapers [4, 2] [3, 5]
[3, 5]: A numeric vector [TW K] where TW
is the time-bandwidth product and K is the

number of tapers, less than or equal to 2TW-1
Frequency of interest (Hz) [1.5 - 40] [4 - 112] [0 - Fs/2] (Fs: sampling frequency)

(a) (b)

Figure 7.4.3: Spectrogram computed with Chronux for a segmented pressure
signal chunk in locomotion time for a) wild type and b) transgenic Fmr1-KO
mouse.

of tapers is a way to control the degree of the smoothing in the spectrogram and

the frequency of interest allows to limit the frequency range. Table 7.1 shows

the parameters used in the processing with Chronux library. Figure 7.4.3 shows

two spectrogram chunks obtained from the locomotion periods for a WT (a)

and transgenic Fmr1-KO (b) mouse models with Chronux. This spectrogram

has been calculated for a frequency band of interest of 1.5-40 Hz, a window size

of 2 s, a window step 0.5 s and number of tapers [3,5].

Table 7.2: Parameters for computation with the MATLAB spectrogram function.

Parameters Value 1 Value 2 Value 3 Range of values
Number of sections 8 4 - Integer

Overlap 0.5 0.1 - [0 - less than window]

Window Hamming Chebyshev Tukey [Bartlett-Hann, Bartlett,
Gaussian ,..., triangular]
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(a) (b)

Figure 7.4.4: Spectrogram computed with MATLAB for a segmented signal
chunk in locomotion time for a) wild type and b) transgenic Fmr1-KO mouse.

Table 7.3: Parameter for spectrogram computation with Sonic Visualizer.
Parameter Value Range of values

Colour Green [Green, Sunset, ... , Wasp, Ice, ...]
Scale dB [Linear, Meter, dB^2, dB, Phase]

Window size 256 [32, 64, 128, 256, 512, ... , 16384, 32768]
Overlap 93.75% [none, 25%, 50%, 75%, 87.5%, 93.75%]

Show All bins [All Bins, Peak Bins, Frequencies]
Scale Linear [Linear, Log]

The MATLAB spectrogram function tuning parameters are the type of win-

dow (Hamming, Chebyshev, Tukey, Gaussian, ...), the number of overlapped

samples, number of DFT points (number of frequency points used to calculate

the discrete Fourier transforms), the sample rate, and the number of sections.

In this work the number of sections, the overlap percent and the type of window

will take different values to compare the results, these values are in the table

7.2. Figure 7.4.4 shows two chunks of spectrograms obtained from the loco-

motion periods for a WT (a) and transgenic Fmr1-KO (b) mouse model with

MATLAB. This spectrogram has been calculated using a Hamming window, 4

sections and an overlap of 0.1.

Finally, in the Sonic Visualizer spectrogram function the parameter tun-

ing was carried out in a manual interaction searching for a configuration that

highlights the visual differences in the spectrogram for different strains. This
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(a) (b)

Figure 7.4.5: Spectrogram computed with Sonic Visualizer for a segmented
signal chunk in locomotion time for a) wild type and b) transgenic Fmr1-KO
mouse.

configuration is shown in the table 7.3 and the figure 7.4.5 shows two spectro-

gram chunks obtained from the locomotion periods for a WT (a) and transgenic

Fmr1-KO (b) mouse models with Sonic Visualizer.

7.5 Classification Methods

For feature classification we have exploited the different machine learning-based

methods implemented in MATLAB namely decision trees, linear discriminant

analysis, logistic regression, Gaussian Naive Bayes, SVM, k-NN, boosted trees,

bagged trees, subspace discriminant, subspace k-NN and RUSBoosted trees.

Additionally, a Multi-layer Perceptron (MLP) was implemented with Python-

Keras libraries. This MLP has four hidden layers and its configuration is shown

in the table 7.4. Depending on the feature extractor, the input layer dimension

varies. The output layer is computed with only one neuron and the binary clas-

sification result will be Wild Type model if the output is less or equal to 0.5,

and Fmr1-KO model if the output is more than 0.5. Another alternatives can

be chosen to compute the output such as selecting another threshold instead of

0.5, or computing two outputs and adding a softmax layer. All the parameters

were chosen by means of a grid search and selecting the best result: 255 batch
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Table 7.4: MLP configuration.

Layer Layer Neurons Activation Dropout
type function normalization

Input layer - variable - -
First hidden layer Dense 400 relu 0.2

Second hidden layer Dense 200 relu -
Third hidden layer Dense 60 relu -
Fourth hidden layer Dense 35 relu -

Output layer Dense 1 sigmoid -

size, 700 epochs, dropout normalization of 0.2 in the input layer and Adam

optimizer.

7.5.1 Transfer learning

For the calculation of classification models over images of spectrograms, we

have used pre-trained convolutional networks. This process, known as transfer

learning, makes it possible to use a network that has already been trained with

a large amount of data and high hardware capacity, so that only the last layer

needs to be trained to adapt it to a new data set. This takes advantage of the

resources of other research teams and it reduces training time as only part of

the network needs to be trained instead of training from scratch. Thus, the

performance of three convolutional networks has been explored in this work:

• AlexNet [111] is a well-known convolutional neural network which won the

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) in 2012.

ImageNet is a dataset of over 15 million labeled high-resolution images

belonging to 22,000 categories. However, a subset of ImageNet with 1000

images for 1000 categories was used for the ILSVRC. The architecture of

AlexNet is composed of five convolutional layers and three fully connected

layers with a final 1000-way softmax.

• GoogLeNet [185] is a deep convolutional neural network with 22 layers
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Table 7.5: Training parameters for transfer learning approach.
Parameter Value

Solver Adam
Learning rate 0.0001

Mini batch size 52
L2 Regularization 0.0001

Folds for Cross-validation 5

Table 7.6: Number of layers and learnables parameters for AlexNet, ResNet50
and GoogLeNet models.

Algorithm Layers Total learnables
AlexNet 25 (depth 8) 56 876 418

ResNet50 177 (depth 50) 23 538 690
GoogLeNet 144 (depth 22) 5 975 602

winner of ILSVRC in image classification and detection in 2014. This

network is based on the Inception architecture that consists of making the

network wider than deeper in order to take into account different scales.

• ResNet50 [79] is a deep convolutional neural network which uses learning

residual functions to train the model. It won the ILSVRC15 in image

detection and localization with the ImageNet dataset doing the task of

classifying the image into one of the 1000 categories in the ImageNet

hierarchy.

The spectrogram images previously generated during the locomotion periods will

be used for training the neural networks with the training parameters shown in

the table 7.5. The number of layers and the total of learnables are shown in the

table 7.6.

7.5.2 Model Training and Evaluation

The question presented in this contribution is formulated as a binary classifica-

tion problem that aims to discriminate between wild type (0 class) and Fmr1-KO
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Table 7.7: Execution time for training and evaluation (cross validation).
Algorithm Execution time

Machine Learning algorithms ~ 1s
MLP ~ 2min

AlexNet ~ 35min
ResNet50 ~ 4h

GoogLeNet ~ 2h

(1 class) models.

The dataset is divided into two parts, one for training and one for testing

with a proportion of 80% and 20%, respectively.

To train the models, 5-fold cross-validation has been applied over the training

dataset, dividing the dataset into 5 folds. For each of the 5 training sessions, a

model is trained with 4 folds and the 5th is used as development set, repeating

this process alternating the development set and obtaining 5 different models.

For validation, the best of the 5 previous models is chosen according to the

accuracy and it is applied to the test set. In addition to accuracy, other metrics

have been evaluated in the test set to compare the algorithms: Area Under the

Curve (AUC), precision and recall.

The input dimension is variable depending on the method and the parame-

ters used to calculate the spectrogram. For image training, the dimensions must

be 227 x 227 x 3 for AlexNet and 224 x 224 x 3 for ResNet50 and GoogLeNet.

The algorithms were implemented in MATLAB and Python with Keras li-

brary using an Intel(R) Core(TM) i9-9880H computer with 64 GB of RAM

and a NVIDIA Quadro RTX 3000 GPU. The execution times for training and

validation are illustrated in the table 7.7.



Chapter 8

Results of Computational

Ethology Experiments

After obtaining the features and images for each configuration showed in the

section 7.4, we have trained the models explained in the section 7.5. In this chap-

ter we report the classification performance results of the wide computational

experiments in terms of accuracy and area under curve (AUC) of the models for

the dataset validation. The results are divided into two main sections. Section

8.1 provides exploratory results for different minimum locomotion times that

allow to determine the optimal duration of locomotion times regarding classifi-

cation performance. Section 8.2 provides results for different configurations and

parameters of feature extraction from the spectrograms. Finally, Section 8.3

provides a discussion of the results in the context of Computational Ethology.

89
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Table 8.1: Accuracy for different minimum locomotion duration.
Minimum locomotion time 1000 ms 1500 ms 2000 ms 2500 ms
window size - step (ms)
# samples x features

1000 - 100
15012 x 2056

1500 - 100
6393 x 2056

2000 - 100
2465 x 3591

2500 - 100
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 70.60% 73.90% 76.90% 77.50%
Medium Tree 70.30% 71.40% 73.20% 79.10%
Coarse Tree 66.90% 67.90% 67.70% 72.70%
Linear Discriminant 82.40% 82.70% 84.40% 99.50%
Logistic Regression 82.20% 82.80% 57.40% 53.50%
Gaussian Naive Bayes 68.20% 70.30% 72.40% 79.70%
Linear SVM 84.90% 88.30% 90.90% 93.60%
Quadratic SVM 87.70% 91.50% 94.30% 95.20%
Cubic SMV 88.40% 92.40% 94.50% 98.40%
Fine Gaussian SVM 69.60% 65.70% 64.90% 54.00%
Medium Gaussian SVM 86.70% 89.80% 90.50% 91.40%
Coarse Gaussian SVM 79.90% 80.40% 79.70% 82.40%
Fine kNN 74.20% 87.40% 92.90% 98.40%
Medium kNN 74.40% 79.00% 81.70% 80.70%
Coarse kNN 72.30% 71.70% 66.70% 61.00%
Cosine kNN 75.10% 81.20% 87.80% 87.20%
Cubic kNN 75.80% 78.70% 81.90% 81.80%
Weighted kNN 76.20% 82.60% 86.20% 85.60%
Boosted Trees 78.20% 81.40% 85.60% 90.90%
Bagged Trees 80.70% 84.90% 86.60% 89.30%
Subspace Discriminant 83.80% 87.90% 88.20% 93.00%
Subspace kNN 69.20% 86.60% 96.10% 97.90%
RUSBoosted Trees 76.20% 76.50% 77.30% 88.20%
MLP 91.58% 93.90% 93.71% 93.62%
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Table 8.2: AUC for different minimum locomotion duration.
Minimum locomotion time 1000 ms 1500 ms 2000 ms 2500 ms
window size - step (ms)
# samples x features

1000 - 100
15012 x 2056

1500 - 100
6393 x 2056

2000 - 100
2465 x 3591

2500 - 100
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.77 0.81 0.77 0.80
Medium Tree 0.74 0.79 0.78 0.82
Coarse Tree 0.70 0.69 0.71 0.76
Linear Discriminant 0.90 0.91 0.84 1.00
Logistic Regression 0.90 0.86 0.57 0.54
Gaussian Naive Bayes 0.69 0.71 0.74 0.79
Linear SVM 0.93 0.96 0.97 0.98
Quadratic SVM 0.95 0.98 0.99 0.99
Cubic SMV 0.95 0.98 0.99 1.00
Fine Gaussian SVM 0.81 0.84 0.90 0.99
Medium Gaussian SVM 0.94 0.96 0.97 0.98
Coarse Gaussian SVM 0.90 0.90 0.90 0.91
Fine kNN 0.75 0.88 0.93 0.98
Medium kNN 0.86 0.91 0.94 0.95
Coarse kNN 0.86 0.86 0.87 0.88
Cosine kNN 0.84 0.90 0.94 0.95
Cubic kNN 0.87 0.91 0.94 0.94
Weighted kNN 0.87 0.93 0.96 0.97
Boosted Trees 0.87 0.91 0.94 0.96
Bagged Trees 0.90 0.92 0.94 0.96
Subspace Discriminant 0.92 0.96 0.96 0.99
Subspace kNN 0.77 0.93 0.99 0.99
RUSBoosted Trees 0.85 0.85 0.85 0.96
MLP 0.91 0.94 0.94 0.94
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8.1 Results for Different Minimum Locomotion

Duration

The process of animal model classification is based on the data from locomotion

periods. These periods are used for signal segmentation and compute the en-

suing spectrogram. However, some locomotion periods may be too short to be

taken into account, as the stationary part of the signal is negligible compared

to the transient parts of the edges. The aim of this section is to identify the

optimal minimum size of the segmented locomotion period under consideration.

For comparison, the signal slices were segmented according to the minimum

locomotion time and the spectrogram was calculated only for that part of the

signal using the MATLAB spectrogram function with the following parameter

settings:

• Hamming window

• 8 number of sections

• Overlap 50%

Tables 8.1 and 8.2 show the accuracy and AUC results, respectively, for test

set validation after filtering locomotion periods longer than 1000, 1500, 2000

and 2500 ms. No experiments have been performed for duration longer than

2500 ms because the resulting number of samples is very small compared to the

number of features (366 x 3592).

The best prediction results are obtained for a minimum locomotion duration

of 2500 ms, where linear discriminant returns 99.50% accuracy, cubic SVM

98.40% and subspace k-NN 97.90%, among others. Regarding the AUC, the

best results are achieved also for a minimum locomotion duration of 2500 ms,

and the most remarkable results are 1.00 AUC for linear discriminant and cubic
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SVM, or 0.99 for quadratic SVM, fine Gaussian SVM, subspace discriminant

and subspace k-NN. Consequently, in the ensuing experiments, the minimum

locomotion duration was set to 2500 ms for signal or spectrogram segmentation.

8.2 Results for Different Spectrogram Features

and Images

To obtain a dataset containing the spectrogram features or images for the dis-

crimination among animal models, we have followed two radically different ap-

proaches. In the first approach, localized spectrograms are obtained from chunks

of the piezoelectric signal corresponding to the selected locomotion periods that

must be longer than the minimum time threshold. In the second approach, the

spectrogram of the whole signal is calculated first, and, then the time periods

corresponding to the valid locomotion periods are segmented from this large

spectrogram.

This section is divided into three subsections, reporting results on the diverse

approaches of dataset construction:

1. Feature classification of the spectrogram calculated only in segmented

chunks using MATLAB and Chronux libraries.

2. Feature classification of the spectrogram calculated for the whole signal

using MATLAB and Chronux libraries and Sonic Visualizer.

3. Image classification of the spectrogram calculated for the whole signal

using MATLAB and Chronux libraries and Sonic Visualizer.

The figure 8.2.1 shows a diagram with the structure of the experiments reported

in this Chapter:

The following parameters have been used for the experiments:
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Figure 8.2.1: Structure of the experiments.

• Minimum locomotion duration of 2500 ms

• Sampling window size of 2500 ms

• Window step of 100 ms

8.2.1 Results of Segmented Chunks Spectrogram Feature

Classification. Spectrogram from MATLAB, and

Chronux.

In this section we show the classification results for the test set using the fea-

tures obtained with MATLAB and Chronux spectrograms only for those periods

previously segmented as locomotion periods.

MATLAB Spectrogram Features For the computation of the spectro-

grams, different parameters have been studied: the type of window, the number

of sections and the overlap, as indicated in the table 7.2.
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Table 8.3: Accuracy for spectrogram computed only for segmented chunks with
Matlab library and Hamming window.

Window type Hamming
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 78.10% 73.30% 75.40% 77.50%
Medium Tree 78.10% 77.50% 74.90% 79.10%
Coarse Tree 73.30% 77.00% 77.00% 72.70%
Linear Discriminant 95.70% 80.70% 98.40% 99.50%
Logistic Regression 60.40% 55.10% 70.10% 53.50%
Gaussian Naive Bayes 70.10% 78.10% 83.40% 79.70%
Kernel Naive Bayes 77.00% 80.20% 90.40% 82.90%
Linear SVM 90.90% 85.60% 92.50% 93.60%
Quadratic SVM 95.70% 91.40% 95.70% 95.20%
Cubic SMV 95.20% 93.00% 96.30% 98.40%
Fine Gaussian SVM 57.20% 54.00% 58.80% 54.00%
Medium Gaussian SVM 92.50% 87.70% 95.20% 91.40%
Coarse Gaussian SVM 74.30% 78.60% 84.00% 82.40%
Fine kNN 97.30% 92.50% 96.80% 98.40%
Medium kNN 79.70% 76.50% 87.20% 80.70%
Coarse kNN 61.50% 59.40% 66.80% 61.00%
Cosine kNN 86.60% 84.00% 88.80% 87.20%
Cubic kNN 83.40% 77.00% 86.10% 81.80%
Weighted kNN 85.60% 82.40% 89.30% 85.60%
Boosted Trees 87.20% 81.30% 92.50% 90.90%
Bagged Trees 89.30% 87.20% 94.10% 89.30%
Subspace Discriminant 96.30% 86.10% 97.90% 93.00%
Subspace kNN 97.30% 94.70% 97.30% 97.90%
RUSBoosted Trees 80.70% 83.40% 89.30% 88.20%
MLP 95.74% 91.49% 96.28% 93.62%
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Table 8.4: AUC for spectrogram computed only for segmented chunks with
Matlab library and Hamming window.

Window type Hamming
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.80 0.75 0.77 0.80
Medium Tree 0.82 0.78 0.75 0.82
Coarse Tree 0.74 0.80 0.80 0.76
Linear Discriminant 0.96 0.80 0.99 1.00
Logistic Regression 0.64 0.53 0.72 0.54
Gaussian Naive Bayes 0.70 0.79 0.84 0.79
Kernel Naive Bayes 0.79 0.82 0.91 0.86
Linear SVM 0.97 0.93 0.98 0.98
Quadratic SVM 0.99 0.97 0.99 0.99
Cubic SMV 0.99 0.97 1.00 1.00
Fine Gaussian SVM 0.97 0.94 0.99 0.99
Medium Gaussian SVM 0.96 0.96 0.98 0.98
Coarse Gaussian SVM 0.85 0.87 0.91 0.91
Fine kNN 0.97 0.92 0.97 0.98
Medium kNN 0.93 0.92 0.94 0.95
Coarse kNN 0.85 0.88 0.90 0.88
Cosine kNN 0.93 0.94 0.96 0.95
Cubic kNN 0.94 0.93 0.96 0.94
Weighted kNN 0.96 0.94 0.97 0.97
Boosted Trees 0.96 0.92 0.98 0.96
Bagged Trees 0.95 0.92 0.98 0.96
Subspace Discriminant 0.99 0.94 0.99 0.99
Subspace kNN 0.99 0.97 0.98 0.99
RUSBoosted Trees 0.90 0.92 0.97 0.96
MLP 0.96 0.91 0.96 0.94
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Table 8.5: Accuracy for spectrogram computed only for segmented chunks with
Matlab library and Tukey window.

Window type Tukey
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 82.40% 71.10% 84.50% 86.60%
Medium Tree 81.80% 77.00% 85.00% 86.10%
Coarse Tree 77.00% 74.90% 74.30% 79.70%
Linear Discriminant 97.30% 93.60% 100.00% 99.50%
Logistic Regression 57.20% 56.10% 67.90% 52.90%
Gaussian Naive Bayes 86.60% 74.30% 86.60% 81.30%
Kernel Naive Bayes 88.80% 77.00% 89.80% 82.40%
Linear SVM 95.20% 90.40% 97.90% 96.80%
Quadratic SVM 98.90% 96.80% 99.50% 98.90%
Cubic SMV 98.90% 97.90% 100.00% 99.50%
Fine Gaussian SVM 70.10% 54.00% 97.30% 59.90%
Medium Gaussian SVM 98.40% 92.00% 98.40% 97.30%
Coarse Gaussian SVM 88.20% 76.50% 89.30% 83.40%
Fine kNN 96.80% 96.80% 100.00% 99.50%
Medium kNN 86.10% 81.30% 90.40% 89.80%
Coarse kNN 67.40% 64.70% 73.80% 63.10%
Cosine kNN 93.00% 86.10% 92.00% 92.50%
Cubic kNN 87.20% 81.30% 90.90% 89.30%
Weighted kNN 95.70% 87.70% 98.90% 97.90%
Boosted Trees 96.30% 85.60% 96.30% 93.00%
Bagged Trees 94.70% 87.20% 93.00% 93.60%
Subspace Discriminant 98.40% 93.00% 100.00% 98.40%
Subspace kNN 100.00% 92.50% 99.50% 98.40%
RUSBoosted Trees 86.10% 84.00% 90.40% 88.20%
MLP 98.94% 97.87% 100.00% 97.34%
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Table 8.6: AUC for spectrogram computed only for segmented chunks with
Matlab library and Tukey window.

Window type Tukey
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.86 0.73 0.86 0.87
Medium Tree 0.82 0.74 0.87 0.84
Coarse Tree 0.81 0.81 0.81 0.81
Linear Discriminant 0.97 0.93 1.00 0.99
Logistic Regression 0.59 0.57 0.70 0.54
Gaussian Naive Bayes 0.87 0.74 0.87 0.81
Kernel Naive Bayes 0.91 0.80 0.91 0.85
Linear SVM 0.99 0.97 1.00 0.99
Quadratic SVM 1.00 1.00 1.00 1.00
Cubic SMV 1.00 1.00 1.00 1.00
Fine Gaussian SVM 1.00 0.93 1.00 0.99
Medium Gaussian SVM 1.00 0.97 1.00 1.00
Coarse Gaussian SVM 0.95 0.86 0.95 0.93
Fine kNN 0.97 0.97 1.00 0.99
Medium kNN 0.97 0.94 0.98 0.99
Coarse kNN 0.89 0.86 0.91 0.91
Cosine kNN 0.98 0.95 0.98 0.99
Cubic kNN 0.97 0.91 0.98 0.99
Weighted kNN 1.00 0.96 1.00 1.00
Boosted Trees 1.00 0.93 0.99 0.99
Bagged Trees 0.99 0.93 0.99 0.99
Subspace Discriminant 1.00 0.98 1.00 0.99
Subspace kNN 1.00 0.98 1.00 1.00
RUSBoosted Trees 0.96 0.92 0.97 0.96
MLP 0.99 0.98 1.00 0.97



8.2. RESULTS FOR DIFFERENT SPECTROGRAM FEATURES AND
IMAGES 99

Table 8.7: Accuracy for spectrogram computed only for segmented chunks with
Matlab library and Chebyshev window.

Window type Chebyshev
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 80.70% 73.30% 85.60% 79.10%
Medium Tree 80.20% 72.70% 85.00% 78.10%
Coarse Tree 81.30% 74.90% 80.70% 77.00%
Linear Discriminant 92.50% 75.90% 97.90% 94.10%
Logistic Regression 51.90% 52.40% 65.80% 50.80%
Gaussian Naive Bayes 79.70% 76.50% 85.00% 75.40%
Kernel Naive Bayes 81.30% 75.90% 85.60% 74.90%
Linear SVM 92.00% 86.60% 95.70% 90.40%
Quadratic SVM 94.70% 91.40% 97.90% 96.30%
Cubic SMV 94.70% 90.40% 99.50% 96.80%
Fine Gaussian SVM 54.50% 54.00% 64.70% 54.00%
Medium Gaussian SVM 90.40% 87.70% 97.90% 90.40%
Coarse Gaussian SVM 82.40% 75.90% 86.10% 75.40%
Fine kNN 96.80% 84.00% 97.30% 97.30%
Medium kNN 86.60% 76.50% 88.20% 81.80%
Coarse kNN 69.00% 61.50% 69.00% 65.20%
Cosine kNN 90.90% 87.20% 93.00% 89.30%
Cubic kNN 85.60% 78.10% 86.60% 81.30%
Weighted kNN 90.90% 80.70% 96.80% 88.80%
Boosted Trees 92.50% 86.60% 94.70% 86.10%
Bagged Trees 88.80% 84.50% 92.00% 84.50%
Subspace Discriminant 94.10% 81.80% 94.70% 94.70%
Subspace kNN 97.30% 84.00% 98.90% 95.70%
RUSBoosted Trees 84.00% 84.50% 86.60% 84.00%
MLP 94.68% 87.77% 98.94% 92.55%
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Table 8.8: AUC for spectrogram computed only for segmented chunks with
Matlab library and Chebyshev window.

Window type Chebyshev
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.81 0.74 0.86 0.79
Medium Tree 0.84 0.77 0.82 0.79
Coarse Tree 0.86 0.77 0.79 0.81
Linear Discriminant 0.92 0.76 0.98 0.94
Logistic Regression 0.55 0.52 0.66 0.52
Gaussian Naive Bayes 0.80 0.76 0.85 0.75
Kernel Naive Bayes 0.84 0.78 0.86 0.78
Linear SVM 0.97 0.93 0.99 0.97
Quadratic SVM 0.99 0.96 1.00 1.00
Cubic SMV 0.99 0.94 1.00 1.00
Fine Gaussian SVM 0.96 0.88 1.00 0.95
Medium Gaussian SVM 0.97 0.95 1.00 0.97
Coarse Gaussian SVM 0.90 0.87 0.94 0.86
Fine kNN 0.97 0.83 0.98 0.97
Medium kNN 0.96 0.90 0.97 0.94
Coarse kNN 0.86 0.86 0.91 0.87
Cosine kNN 0.97 0.93 0.98 0.95
Cubic kNN 0.96 0.89 0.97 0.93
Weighted kNN 0.98 0.91 0.99 0.95
Boosted Trees 0.96 0.93 0.99 0.92
Bagged Trees 0.95 0.91 0.98 0.91
Subspace Discriminant 0.99 0.91 0.99 0.99
Subspace kNN 1.00 0.93 1.00 0.98
RUSBoosted Trees 0.92 0.90 0.92 0.91
MLP 0.94 0.87 0.99 0.93
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Tables 8.3 and 8.4 show the accuracy and AUC results, respectively, after

training the models and validating them with the test set, using a Hamming

window. Similarly, tables 8.5, 8.6, 8.7 and 8.8 show the results of accuracy and

AUC, for a Tukey and Chebyshev window, respectively.

As can be seen in the tables, for the Hamming window, 97.30% accuracy is

obtained for the subspace k-NN and fine k-NN methods with 4 sections and 0.1

overlap. For the Tukey window, 100% accuracy is observed for subspace k-NN

with 4 sections and 0.1 overlap, in linear discriminant, subspace discriminant,

cubic SVM and fine k-NN with 4 sections and 0.5 overlap. For the Chebyshev

window, results of 97.30% for subspace k-NN and 96.80% for fine k-NN with 4

sections and 0.1 overlap are obtained.

Chronux Spectrogram Features For the calculation of spectrograms with

Chronux, different parameters can be modified: the frequency of interest, the

number of tapers and the window to calculate the spectrogram, its size and

step. In this work we have used the parameters shown in table 7.1.

The tables 8.9 and 8.10 show the accuracy and AUC for the range 1.5-

40 Hz and for different number of tapers and window step and size. For this

frequency range, the best results are 98.90% accuracy with fine k-NN for window

parameters of [1, 0.1] seconds and tapers [4, 2], 98.90% accuracy for fine k-NN,

or 97.90% with subspace k-NN for window parameters of [2, 0.2] seconds and

tapers [4, 2] or 98.40% accuracy with the MLP and subspace k-NN, or 97.30%

with fine k-NN for window parameters of [2, 0.2] seconds and tapers [3, 5].

Similarly, the tables 8.11 and 8.12 show the accuracy and AUC for the range

4-112 Hz and for different number of tapers and window step and size. Where

the best results are 100% accuracy with fine k-NN for window parameters of

[1, 0.1] seconds and tapers [4, 2], 97.30% accuracy for subspace k-NN, or 96.8%

accuracy for linear discriminant, weighted k-NN and subspace discriminant for
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Table 8.9: Accuracy for spectrogram computed only for segmented chunks with
Chronux library and frequencies from 1.5 to 40 Hz.

Frequency range 1.5 - 40 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4, 2
938 x 1008

2, 0.2 - 4, 2
938 x 381

1, 0.1 - 3, 5
938 x 1008

2, 0.2 - 3, 5
938 x 381

Accuracy Accuracy Accuracy Accuracy
Fine Tree 79.70% 75.90% 88.80% 84.00%
Medium Tree 81.30% 74.90% 87.70% 84.00%
Coarse Tree 77.00% 73.80% 82.40% 79.70%
Linear Discriminant 59.40% 86.10% 59.40% 84.50%
Logistic Regression 49.20% 84.50% 51.90% 82.40%
Gaussian Naive Bayes 65.80% 66.30% 70.10% 69.50%
Kernel Naive Bayes 68.40% 73.80% 71.10% 76.50%
Linear SVM 75.40% 78.10% 79.70% 80.70%
Quadratic SVM 85.60% 89.30% 88.80% 88.20%
Cubic SMV 86.60% 92.00% 93.60% 95.20%
Fine Gaussian SVM 79.10% 89.30% 84.50% 93.00%
Medium Gaussian SVM 84.00% 87.70% 84.50% 86.60%
Coarse Gaussian SVM 67.90% 74.30% 72.70% 71.70%
Fine kNN 98.90% 98.90% 97.30% 97.30%
Medium kNN 75.90% 80.70% 79.10% 87.20%
Coarse kNN 67.90% 66.80% 70.10% 73.30%
Cosine kNN 73.80% 84.00% 81.30% 90.40%
Cubic kNN 76.50% 82.90% 78.10% 87.70%
Weighted kNN 86.10% 95.20% 86.60% 96.30%
Boosted Trees 90.40% 92.00% 89.80% 92.50%
Bagged Trees 92.00% 88.20% 88.80% 94.10%
Subspace Discriminant 72.20% 85.60% 73.30% 84.00%
Subspace kNN 97.30% 97.90% 95.70% 98.40%
RUSBoosted Trees 88.20% 84.00% 82.40% 90.90%
MLP 93.62% 96.81% 97.34% 98.40%
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Table 8.10: AUC for spectrogram computed only for segmented chunks with
Chronux library and frequencies from 1.5 to 40 Hz.

Frequency range 1.5 - 40 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4, 2
938 x 1008

2, 0.2 - 4, 2
938 x 381

1, 0.1 - 3, 5
938 x 1008

2, 0.2 - 3, 5
938 x 381

AUC AUC AUC AUC
Fine Tree 0.79 0.75 0.87 0.87
Medium Tree 0.85 0.75 0.89 0.86
Coarse Tree 0.78 0.76 0.85 0.81
Linear Discriminant 0.59 0.91 0.59 0.88
Logistic Regression 0.50 0.85 0.52 0.86
Gaussian Naive Bayes 0.65 0.66 0.69 0.71
Kernel Naive Bayes 0.72 0.76 0.75 0.77
Linear SVM 0.78 0.87 0.89 0.86
Quadratic SVM 0.89 0.95 0.95 0.95
Cubic SMV 0.90 0.97 0.97 0.99
Fine Gaussian SVM 0.97 0.97 0.97 0.99
Medium Gaussian SVM 0.88 0.93 0.94 0.93
Coarse Gaussian SVM 0.76 0.79 0.84 0.81
Fine kNN 0.99 0.99 0.97 0.97
Medium kNN 0.89 0.95 0.89 0.95
Coarse kNN 0.73 0.74 0.79 0.81
Cosine kNN 0.88 0.95 0.88 0.96
Cubic kNN 0.89 0.94 0.87 0.95
Weighted kNN 0.97 1.00 0.95 0.98
Boosted Trees 0.96 0.98 0.95 0.98
Bagged Trees 0.97 0.95 0.95 0.98
Subspace Discriminant 0.78 0.91 0.79 0.94
Subspace kNN 0.99 1.00 0.97 0.99
RUSBoosted Trees 0.96 0.93 0.91 0.97
MLP 0.93 0.97 0.97 0.98
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Table 8.11: Accuracy for spectrogram computed only for segmented chunks with
Chronux library and frequencies from 4 to 112 Hz.

Frequency range 4 - 112 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4, 2
938 x 2832

2, 0.2 - 4, 2
938 x 1062

1 0.1 - 3, 5
938 x 2832

2 0.2 - 3, 5
938 x 1062

Accuracy Accuracy Accuracy Accuracy
Fine Tree 82.90% 90.40% 86.10% 89.80%
Medium Tree 82.90% 87.20% 84.50% 89.80%
Coarse Tree 84.00% 85.60% 78.60% 87.70%
Linear Discriminant 87.70% 96.80% 93.60% 82.90%
Logistic Regression 63.10% 82.90% 50.30% 59.40%
Gaussian Naive Bayes 78.10% 77.50% 78.10% 75.90%
Kernel Naive Bayes 63.60% 75.90% 77.50% 78.60%
Linear SVM 87.70% 89.80% 86.60% 89.30%
Quadratic SVM 92.00% 92.00% 93.00% 91.40%
Cubic SMV 93.00% 94.10% 93.60% 95.70%
Fine Gaussian SVM 80.70% 92.50% 85.60% 93.60%
Medium Gaussian SVM 90.90% 91.40% 88.80% 90.40%
Coarse Gaussian SVM 79.70% 82.90% 84.00% 83.40%
Fine kNN 100.00% 99.50% 97.90% 97.90%
Medium kNN 83.40% 87.20% 87.70% 90.90%
Coarse kNN 69.00% 75.40% 74.90% 75.40%
Cosine kNN 85.60% 88.20% 89.80% 92.00%
Cubic kNN 97.70% 86.60% 86.10% 88.80%
Weighted kNN 94.70% 96.80% 95.70% 96.30%
Boosted Trees 93.60% 96.30% 95.20% 95.20%
Bagged Trees 89.80% 93.60% 89.80% 94.70%
Subspace Discriminant 78.10% 96.80% 88.20% 91.40%
Subspace kNN 96.30% 97.30% 95.20% 96.30%
RUSBoosted Trees 88.80% 92.50% 88.20% 95.70%
MLP 97.87% 97.34% 96.81% 97.87%
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Table 8.12: AUC for spectrogram computed only for segmented chunks with
Chronux library and frequencies from 4 to 112 Hz.

Frequency range 4 - 112 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4, 2
938 x 2832

2, 0.2 - 4, 2
938 x 1062

1 0.1 - 3, 5
938 x 2832

2 0.2 - 3, 5
938 x 1062

AUC AUC AUC AUC
Fine Tree 0.85 0.90 0.87 0.89
Medium Tree 0.84 0.89 0.81 0.89
Coarse Tree 0.85 0.84 0.83 0.87
Linear Discriminant 0.87 0.97 0.94 0.82
Logistic Regression 0.64 0.85 0.50 0.61
Gaussian Naive Bayes 0.78 0.78 0.77 0.75
Kernel Naive Bayes 0.72 0.77 0.79 0.79
Linear SVM 0.95 0.96 0.93 0.96
Quadratic SVM 0.98 0.98 0.96 0.97
Cubic SMV 0.99 0.99 0.96 0.99
Fine Gaussian SVM 1.00 0.99 0.97 0.99
Medium Gaussian SVM 0.97 0.98 0.93 0.96
Coarse Gaussian SVM 0.88 0.90 0.86 0.89
Fine kNN 1.00 1.00 0.98 0.98
Medium kNN 0.97 0.97 0.97 0.97
Coarse kNN 0.81 0.85 0.83 0.85
Cosine kNN 0.94 0.97 0.95 0.98
Cubic kNN 0.94 0.96 0.95 0.96
Weighted kNN 1.00 1.00 0.98 0.99
Boosted Trees 0.98 0.99 0.98 0.99
Bagged Trees 0.97 0.99 0.95 0.98
Subspace Discriminant 0.85 1.00 0.95 0.97
Subspace kNN 0.99 1.00 0.98 0.99
RUSBoosted Trees 0.97 0.98 0.97 0.99
MLP 0.98 0.97 0.97 0.98
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window parameters of [2, 0.2] seconds and tapers [4, 2] or 97.87% accuracy with

MLP for window parameters of [2, 0.2] seconds and tapers [3, 5].

8.2.2 Results of whole Signal Spectrogram Feature Clas-

sification. Spectrograms from MATLAB, Chronux,

and Sonic Visualizer

This section shows the results of classifying the test set using the features ob-

tained with the spectrograms of MATLAB, Chronux and Sonic Visualizer. In

this second approach, the spectrogram of the complete signal was calculated

and then it is segmented taking into account the locomotion periods.

MATLAB Spectrogram Features Analogously to the previous subsection,

different parameters have been studied to train the models: the type of window,

the number of sections and the overlap, as shown in table 7.2.

Tables 8.13 and 8.14 show the accuracy and AUC results, respectively, after

training the models and validating them with the test set, using a Hamming

window. Analogously, tables 8.15 , 8.16 , 8.17 y 8.18 show the results of accuracy

and AUC, for a Tukey and Chebyshev window, respectively.

As can be seen in the tables, for the Hamming window, 99.50% accuracy is

obtained for the linear discriminant, quadratic and cubic SVM methods with 4

sections and 0.1 overlap. For the Tukey window, 98.90% accuracy is observed

for fine k-NN and RUSBoosted trees with 4 sections and 0.5 overlap. For the

Chebyshev window, results of 100% for cubic SVM and 99.50% for linear dis-

criminant and quadratic SVM with 8 sections and 0.5 overlap are obtained.

Chronux Spectrogram Features Analogous to the previous section, table

7.1. shows the parameters that have been used to calculate the spectrogram

with the Chronux library.
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Table 8.13: Accuracy for spectrogram computed for the whole piezosignal with
Matlab library and Hamming window and then segmented.

Window type Hamming
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 95.70% 92.50% 98.40% 96.80%
Medium Tree 95.20% 87.20% 98.40% 96.80%
Coarse Tree 81.30% 75.90% 84.00% 81.80%
Linear Discriminant 99.50% 94.70% 97.30% 97.90%
Logistic Regression 94.10% 91.40% 95.70% 93.00%
Gaussian Naive Bayes 46.50% 48.10% 48.10% 48.70%
Kernel Naive Bayes 95.20% 88.20% 90.90% 92.00%
Linear SVM 95.20% 88.80% 94.10% 95.70%
Quadratic SVM 99.50% 93.00% 97.30% 97.90%
Cubic SMV 99.50% 94.10% 97.90% 98.40%
Fine Gaussian SVM 95.70% 89.80% 97.30% 93.00%
Medium Gaussian SVM 97.90% 90.40% 98.40% 94.70%
Coarse Gaussian SVM 80.70% 77.00% 84.00% 84.50%
Fine kNN 97.30% 97.30% 95.20% 96.30%
Medium kNN 80.70% 72.20% 81.80% 85.60%
Coarse kNN 66.30% 58.80% 65.20% 62.00%
Cosine kNN 89.80% 81.80% 88.80% 90.90%
Cubic kNN 81.80% 72.70% 84.00% 86.10%
Weighted kNN 97.90% 95.70% 97.30% 97.90%
Boosted Trees 97.30% 92.00% 98.40% 96.30%
Bagged Trees 97.90% 92.50% 97.90% 96.30%
Subspace Discriminant 93.60% 94.10% 93.00% 94.70%
Subspace kNN 95.20% 92.00% 96.80% 97.30%
RUSBoosted Trees 96.30% 89.80% 54.00% 96.80%
MLP 97.87% 96.28% 96.28% 97.87%
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Table 8.14: AUC for spectrogram computed for the whole piezosignal with
Matlab library and Hamming window and then segmented.

Window type Hamming
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.96 0.92 0.98 0.97
Medium Tree 0.96 0.87 0.98 0.97
Coarse Tree 0.83 0.80 0.84 0.83
Linear Discriminant 0.99 0.95 0.97 0.98
Logistic Regression 0.95 0.91 0.96 0.93
Gaussian Naive Bayes 0.50 0.52 0.52 0.52
Kernel Naive Bayes 0.95 0.89 0.91 0.92
Linear SVM 1.00 0.96 0.99 1.00
Quadratic SVM 1.00 0.99 1.00 1.00
Cubic SMV 1.00 0.99 1.00 1.00
Fine Gaussian SVM 1.00 0.99 1.00 0.99
Medium Gaussian SVM 1.00 0.98 1.00 1.00
Coarse Gaussian SVM 0.91 0.84 0.94 0.94
Fine kNN 0.97 0.97 0.95 0.96
Medium kNN 0.94 0.88 0.96 0.96
Coarse kNN 0.85 0.85 0.89 0.90
Cosine kNN 0.97 0.93 0.97 0.98
Cubic kNN 0.94 0.92 0.95 0.94
Weighted kNN 1.00 1.00 0.99 1.00
Boosted Trees 0.98 0.99 0.98 0.99
Bagged Trees 1.00 0.99 1.00 1.00
Subspace Discriminant 1.00 0.99 0.97 0.98
Subspace kNN 0.99 0.97 0.99 1.00
RUSBoosted Trees 0.98 0.97 - 0.99
MLP 0.98 0.96 0.96 0.98
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Table 8.15: Accuracy for spectrogram computed for the whole piezosignal with
Matlab library and Tukey window and then segmented.

Window type Tukey
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 93.60% 91.40% 96.80% 93.60%
Medium Tree 93.60% 87.20% 96.80% 93.60%
Coarse Tree 82.40% 73.80% 85.00% 82.90%
Linear Discriminant 97.90% 96.80% 98.40% 97.90%
Logistic Regression 93.60% 92.00% 93.60% 89.80%
Gaussian Naive Bayes 48.10% 48.70% 50.30% 48.10%
Kernel Naive Bayes 92.50% 90.40% 91.40% 93.00%
Linear SVM 96.30% 94.10% 96.30% 94.10%
Quadratic SVM 97.30% 96.30% 96.80% 95.70%
Cubic SMV 96.30% 96.80% 97.90% 97.30%
Fine Gaussian SVM 94.10% 92.00% 94.70% 92.50%
Medium Gaussian SVM 96.80% 94.70% 95.70% 95.20%
Coarse Gaussian SVM 85.00% 79.10% 84.50% 80.70%
Fine kNN 97.30% 94.70% 98.90% 96.80%
Medium kNN 87.70% 79.70% 91.40% 85.00%
Coarse kNN 64.70% 65.80% 75.40% 67.90%
Cosine kNN 89.30% 90.40% 92.50% 92.50%
Cubic kNN 86.10% 78.60% 91.40% 82.90%
Weighted kNN 96.30% 94.10% 97.30% 97.90%
Boosted Trees 94.10% 97.90% 54.00% 97.30%
Bagged Trees 94.70% 96.30% 97.90% 96.80%
Subspace Discriminant 96.30% 97.30% 90.90% 92.50%
Subspace kNN 95.20% 97.30% 97.30% 96.30%
RUSBoosted Trees 94.10% 94.10% 98.90% 95.70%
MLP 96.81% 93.62% 96.81% 98.40%
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Table 8.16: AUC for spectrogram computed for the whole piezosignal with
Matlab library and Tukey window and then segmented.

Window type Tukey
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.94 0.93 0.97 0.95
Medium Tree 0.92 0.87 0.97 0.94
Coarse Tree 0.85 0.76 0.89 0.85
Linear Discriminant 0.98 0.97 0.99 0.98
Logistic Regression 0.94 0.92 0.94 0.90
Gaussian Naive Bayes 0.52 0.52 0.54 0.52
Kernel Naive Bayes 0.92 0.92 0.92 0.94
Linear SVM 1.00 0.99 0.98 0.99
Quadratic SVM 1.00 1.00 0.99 1.00
Cubic SMV 1.00 1.00 1.00 1.00
Fine Gaussian SVM 1.00 0.99 1.00 0.99
Medium Gaussian SVM 1.00 0.99 1.00 0.99
Coarse Gaussian SVM 0.94 0.89 0.93 0.91
Fine kNN 0.97 0.95 0.99 0.97
Medium kNN 0.96 0.94 0.98 0.98
Coarse kNN 0.89 0.88 0.88 0.89
Cosine kNN 0.97 0.97 0.99 0.99
Cubic kNN 0.96 0.93 0.97 0.98
Weighted kNN 0.99 0.99 0.99 0.99
Boosted Trees 0.95 1.00 - 1.00
Bagged Trees 0.99 0.99 1.00 1.00
Subspace Discriminant 0.99 0.99 0.95 0.96
Subspace kNN 0.99 1.00 1.00 1.00
RUSBoosted Trees 0.95 0.98 1.00 1.00
MLP 0.97 0.94 0.96 0.98
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Table 8.17: Accuracy for spectrogram computed for the whole piezosignal with
Matlab library and Chebyshev window and then segmented.

Window type Chebyshev
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

Accuracy Accuracy Accuracy Accuracy
Fine Tree 97.30% 93.00% 97.30% 93.00%
Medium Tree 96.80% 90.90% 97.30% 92.50%
Coarse Tree 86.10% 80.20% 84.50% 78.60%
Linear Discriminant 98.90% 94.10% 98.40% 99.50%
Logistic Regression 92.50% 88.80% 94.70% 86.60%
Gaussian Naive Bayes 48.70% 48.70% 48.10% 48.10%
Kernel Naive Bayes 93.00% 85.00% 94.70% 91.40%
Linear SVM 95.70% 88.20% 95.70% 97.30%
Quadratic SVM 98.90% 94.10% 97.30% 99.50%
Cubic SMV 98.90% 95.70% 98.40% 100.00%
Fine Gaussian SVM 91.40% 90.90% 95.20% 89.30%
Medium Gaussian SVM 98.40% 92.50% 96.30% 96.80%
Coarse Gaussian SVM 85.00% 74.90% 81.80% 81.80%
Fine kNN 98.90% 94.10% 96.30% 96.30%
Medium kNN 82.90% 76.50% 85.60% 85.00%
Coarse kNN 69.00% 66.30% 71.10% 65.20%
Cosine kNN 91.40% 87.70% 90.90% 90.40%
Cubic kNN 81.80% 75.40% 84.50% 84.50%
Weighted kNN 98.40% 95.20% 96.80% 97.30%
Boosted Trees 95.20% 93.00% 97.30% 94.70%
Bagged Trees 98.90% 94.10% 98.40% 97.30%
Subspace Discriminant 97.30% 90.90% 93.60% 95.70%
Subspace kNN 97.90% 90.90% 96.80% 93.60%
RUSBoosted Trees 97.30% 93.00% 95.20% 96.30%
MLP 96.28% 96.81% 96.28% 97.87%
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Table 8.18: AUC for spectrogram computed for the whole piezosignal with
Matlab library and Chebyshev window and then segmented.

Window type Chebyshev
number of sections - overlap
samples x features

4 - 0.1
938 x 2052

8 - 0.1
938 x 1799

4 - 0.5
938 x 4100

8 - 0.5
938 x 4104

AUC AUC AUC AUC
Fine Tree 0.98 0.94 0.97 0.93
Medium Tree 0.95 0.91 0.97 0.93
Coarse Tree 0.88 0.80 0.87 0.84
Linear Discriminant 0.99 0.94 0.98 1.00
Logistic Regression 0.94 0.89 0.95 0.87
Gaussian Naive Bayes 0.55 0.52 0.52 0.52
Kernel Naive Bayes 0.95 0.87 0.94 0.95
Linear SVM 1.00 0.96 0.99 1.00
Quadratic SVM 1.00 0.98 1.00 1.00
Cubic SMV 1.00 0.98 1.00 1.00
Fine Gaussian SVM 1.00 0.99 1.00 0.99
Medium Gaussian SVM 1.00 0.98 1.00 1.00
Coarse Gaussian SVM 0.93 0.89 0.90 0.93
Fine kNN 0.99 0.94 0.96 0.96
Medium kNN 0.96 0.90 0.96 0.96
Coarse kNN 0.84 0.88 0.87 0.89
Cosine kNN 0.98 0.94 0.97 0.97
Cubic kNN 0.95 0.91 0.95 0.96
Weighted kNN 1.00 0.98 1.00 1.00
Boosted Trees 0.98 0.99 0.97 1.00
Bagged Trees 1.00 0.99 1.00 1.00
Subspace Discriminant 1.00 0.99 0.96 0.99
Subspace kNN 1.00 0.98 1.00 0.99
RUSBoosted Trees 1.00 0.98 1.00 1.00
MLP 0.96 0.97 0.96 0.98
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Table 8.19: Accuracy for spectrogram computed for the whole piezosignal with
Chronux library for frequencies from 1.5 to 40 Hz and then segmented.

Frequency range 1.5 - 40 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4 2
938 x 1575

2, 0.5 - 4 2
937 x 635

1, 0.1 - 3 5
938 x 1575

2, 0.5 - 3 5
937 x 635

Accuracy Accuracy Accuracy Accuracy
Fine Tree 85.60% 94.10% 85.60% 96.30%
Medium Tree 84.00% 90.90% 82.90% 94.10%
Coarse Tree 77.50% 80.70% 77.50% 83.40%
Linear Discriminant 67.90% 94.70% 64.70% 96.30%
Logistic Regression 54.00% 93.60% 46.50% 94.70%
Gaussian Naive Bayes 65.80% 72.70% 67.90% 69.50%
Kernel Naive Bayes 68.40% 83.40% 73.30% 77.50%
Linear SVM 75.90% 86.10% 84.00% 85.00%
Quadratic SVM 88.20% 94.10% 91.40% 95.20%
Cubic SMV 88.20% 94.70% 95.70% 95.70%
Fine Gaussian SVM 80.20% 94.10% 86.10% 94.70%
Medium Gaussian SVM 84.00% 90.90% 88.20% 90.40%
Coarse Gaussian SVM 73.30% 78.60% 74.30% 72.70%
Fine kNN 97.90% 96.30% 97.30% 98.40%
Medium kNN 80.20% 87.20% 81.30% 91.40%
Coarse kNN 69.50% 69.50% 71.10% 68.40%
Cosine kNN 76.50% 87.20% 81.90% 92.00%
Cubic kNN 81.80% 87.70% 80.70% 87.20%
Weighted kNN 93.60% 96.30% 91.40% 96.80%
Boosted Trees 94.70% 94.10% 88.20% 95.70%
Bagged Trees 92.50% 95.20% 87.70% 96.80%
Subspace Discriminant 60.40% 95.70% 66.80% 95.70%
Subspace kNN 98.40% 98.90% 96.30% 97.30%
RUSBoosted Trees 90.90% 91.40% 86.60% 96.30%
MLP 94.15% 97.87% 94.68% 97.87%
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Table 8.20: AUC for spectrogram computed for the whole piezosignal with
Chronux library for frequencies from 1.5 to 40 Hz and then segmented.

Frequency range 1.5 - 40 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4 2
938 x 1575

2, 0.5 - 4 2
937 x 635

1, 0.1 - 3 5
938 x 1575

2, 0.5 - 3 5
937 x 635

AUC AUC AUC AUC
Fine Tree 0.87 0.95 0.86 0.97
Medium Tree 0.85 0.93 0.82 0.95
Coarse Tree 0.81 0.84 0.83 0.85
Linear Discriminant 0.67 0.95 0.64 0.96
Logistic Regression 0.54 0.94 0.46 0.95
Gaussian Naive Bayes 0.65 0.72 0.68 0.69
Kernel Naive Bayes 0.72 0.83 0.76 0.77
Linear SVM 0.79 0.94 0.91 0.93
Quadratic SVM 0.91 0.98 0.97 0.99
Cubic SMV 0.89 0.98 0.98 0.99
Fine Gaussian SVM 0.98 1.00 0.99 1.00
Medium Gaussian SVM 0.90 0.97 0.96 0.97
Coarse Gaussian SVM 0.78 0.85 0.86 0.85
Fine kNN 0.98 0.96 0.97 0.98
Medium kNN 0.91 0.95 0.91 0.96
Coarse kNN 0.77 0.82 0.80 0.78
Cosine kNN 0.89 0.95 0.91 0.95
Cubic kNN 0.92 0.94 0.91 0.94
Weighted kNN 0.98 0.99 0.97 0.99
Boosted Trees 0.97 0.99 0.95 1.00
Bagged Trees 0.98 0.99 0.96 0.99
Subspace Discriminant 0.64 1.00 0.74 1.00
Subspace kNN 1.00 0.99 0.98 0.99
RUSBoosted Trees 0.97 0.96 0.94 0.99
MLP 0.94 0.98 0.95 0.98
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Table 8.21: Accuracy for spectrogram computed for the whole piezosignal with
Chronux library for frequencies from 4 to 112 Hz and then segmented.

Frequency range 4 - 112 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4 2
938 x 4425

2, 0.5 - 4 2
937 x 1770

1, 0.1 - 3 5
938 x 4425

2, 0.5 - 3 5
937 x 1770

Accuracy Accuracy Accuracy Accuracy
Fine Tree 78.60% 95.70% 89.30% 96.30%
Medium Tree 78.60% 95.70% 86.10% 96.30%
Coarse Tree 73.30% 82.40% 79.70% 89.30%
Linear Discriminant 93.00% 96.30% 91.40% 96.30%
Logistic Regression 55.10% 96.30% 54.50% 95.70%
Gaussian Naive Bayes 79.10% 83.40% 74.90% 77.50%
Kernel Naive Bayes 67.90% 89.30% 77.50% 87.20%
Linear SVM 90.90% 92.00% 85.00% 91.40%
Quadratic SVM 93.60% 93.00% 92.50% 95.70%
Cubic SMV 94.10% 95.70% 93.00% 96.30%
Fine Gaussian SVM 84.00% 95.20% 86.60% 93.60%
Medium Gaussian SVM 92.00% 92.00% 88.20% 93.00%
Coarse Gaussian SVM 82.90% 86.10% 80.70% 86.60%
Fine kNN 97.30% 99.50% 96.80% 97.90%
Medium kNN 85.00% 89.80% 83.40% 92.00%
Coarse kNN 70.60% 71.70% 67.90% 78.10%
Cosine kNN 88.20% 90.90% 86.60% 89.80%
Cubic kNN 85.00% 89.80% 84.50% 88.80%
Weighted kNN 92.50% 99.50% 95.70% 98.40%
Boosted Trees 89.80% 98.40% 93.00% 54.00%
Bagged Trees 89.80% 98.40% 92.00% 97.30%
Subspace Discriminant 84.50% 92.50% 88.80% 95.70%
Subspace kNN 97.30% 96.30% 97.30% 98.40%
RUSBoosted Trees 87.70% 98.90% 93.00% 96.80%
MLP 100.00% 96.28% 99.47% 98.40%
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Table 8.22: AUC for spectrogram computed for the whole piezosignal with
Chronux library for frequencies from 4 to 112 Hz and then segmented.

Frequency range 4 - 112 Hz
windowsize, windowstep (s) - tapers
samples x features

1, 0.1 - 4 2
938 x 4425

2, 0.5 - 4 2
937 x 1770

1, 0.1 - 3 5
938 x 4425

2, 0.5 - 3 5
937 x 1770

AUC AUC AUC AUC
Fine Tree 0.79 0.96 0.90 0.96
Medium Tree 0.75 0.96 0.88 0.96
Coarse Tree 0.80 0.84 0.82 0.91
Linear Discriminant 0.93 0.96 0.91 0.96
Logistic Regression 0.56 0.97 0.55 0.96
Gaussian Naive Bayes 0.79 0.84 0.74 0.79
Kernel Naive Bayes 0.79 0.90 0.80 0.87
Linear SVM 0.97 0.98 0.93 0.99
Quadratic SVM 0.98 0.99 0.98 0.99
Cubic SMV 0.99 0.99 0.98 0.99
Fine Gaussian SVM 0.98 1.00 0.97 1.00
Medium Gaussian SVM 0.97 0.99 0.95 0.99
Coarse Gaussian SVM 0.91 0.92 0.86 0.92
Fine kNN 0.97 0.99 0.97 0.98
Medium kNN 0.95 0.98 0.95 0.99
Coarse kNN 0.82 0.84 0.79 0.87
Cosine kNN 0.95 0.98 0.95 0.98
Cubic kNN 0.94 0.98 0.95 0.98
Weighted kNN 0.98 1.00 0.99 1.00
Boosted Trees 0.95 0.99 0.98 -
Bagged Trees 0.96 1.00 0.97 0.99
Subspace Discriminant 0.93 0.99 0.95 0.98
Subspace kNN 0.98 1.00 0.98 0.99
RUSBoosted Trees 0.95 0.99 0.98 0.98
MLP 1.00 0.96 0.99 0.98
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Tables 8.19 and 8.20 show the accuracy and AUC, respectively for the fre-

quency range 1.5-40 Hz and for different number of tapers and window step

and size. The best results are 98.90% accuracy with the subspace k-NN method

and 97.87% for MLP for window parameters of [2, 0.5] seconds and tapers [4,

2] or 98.40% with the subspace k-NN method and 97.90% with fine k-NN for a

window size and step of [1, 0.1] seconds and tapers [4, 2].

Tables 8.21 and 8.22 show the accuracy and AUC, respectively for the fre-

quency range 4-112Hz and for different number of tapers and window step-size.

The results indicate 100% accuracy for MLP with window parameters of [1, 0.1]

seconds and tapers [4, 2] and 99.50% accuracy with fine k-NN and weighted

k-NN for window parameters of [2, 0.5] seconds and tapers [4, 2].

Sonic Visualizer Spectrogram Features To calculate the spectrogram

with Sonic Visualizer, the parameters have been calibrated manually, obtaining

those shown in table 7.3.

Table 8.23 shows the classification accuracy and AUC results, where the best

results are obtained using the cubic SVM, subspace k-NN and MLP methods.

Of the three results, the cubic SVM method also returns an AUC value of 1.

8.2.3 Results of whole Signal Spectrogram Image Classi-

fication by Transfer Learning. Spectrograms from

MATLAB, Chronux, and Sonic Visualizer

To obtain the spectrogram images, the spectrogram is plotted once its numerical

values have been obtained and segmented for each locomotion period. These

numerical data correspond to those of the section 8.2.2. The images obtained

will be used to train the described convolutional networks already pre-trained

with transfer learning.
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Table 8.23: Accuracy and AUC for spectrogram computed for the whole
piezosignal with Sonic Visualizer and then segmented.

windowsize, overlap
samples x features

256, 93.75%
938 x 4095

Accuracy AUC
Fine Tree 83.40% 0.85
Medium Tree 84.00% 0.89
Coarse Tree 79.70% 0.85
Linear Discriminant 74.90% 0.75
Logistic Regression 57.20% 0.59
Gaussian Naive Bayes 63.60% 0.63
Kernel Naive Bayes 72.20% 0.71
Linear SVM 74.30% 0.85
Quadratic SVM 95.20% 0.99
Cubic SMV 95.70% 1.00
Fine Gaussian SVM 58.80% 0.90
Medium Gaussian SVM 94.70% 0.99
Coarse Gaussian SVM 71.10% 0.67
Fine kNN 94.10% 0.94
Medium kNN 90.90% 0.97
Coarse kNN 79.10% 0.83
Cosine kNN 87.70% 0.95
Cubic kNN 89.30% 0.95
Weighted kNN 91.40% 0.98
Boosted Trees 88.20% 0.96
Bagged Trees 95.70% 0.99
Subspace Discriminant 71.70% 0.81
Subspace kNN 96.80% 0.99
RUSBoosted Trees 87.70% 0.95
MLP 96.28% 0.96
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Table 8.24: Accuracy for spectrogram images computed for the whole piezosig-
nal with Matlab library and then segmented.

Window type Chebyshev
Number of sections - overlap 4 - 0.1 4 - 0.5 8 - 0.1 8 - 0.5

Accuracy Accuracy Accuracy Accuracy
AlexNet 94.65% 93.05% 96.79% 98.93%
ResNet50 96.79% 93.05% 98.40% 97.86%
GoogleNet 96.79% 95.19% 98.40% 99.47%

Window type Hamming
Number of sections - overlap 4 - 0.1 4 - 0.5 8 - 0.1 8 - 0.5

Accuracy Accuracy Accuracy Accuracy
AlexNet 95.19% 97.86% 94.65% 96.79%
ResNet50 97.33% 97.33% 99.47% 99.47%
GoogleNet 96.79% 95.72% 97.33% 97.86%

Window type Tukey
Number of sections - overlap 4 - 0.1 4 - 0.5 8 - 0.1 8 - 0.5

Accuracy Accuracy Accuracy Accuracy
AlexNet 99.47% 99.47% 97.86% 97.86%
ResNet50 99.47% 97.86% 97.86% 98.40%
GoogleNet 97.33% 97.86% 97.33% 97.86%

Table 8.25: Accuracy for spectrogram images computed for the whole piezosig-
nal with Chronux library and then segmented.

Frequency range 1.5 - 40 Hz
Windowsize, windowstep (s) - tapers 1, 0.1 - 3, 5 1, 0.1 - 4, 2 2, 0.5 - 3, 5 2, 0.5 - 4, 2

Accuracy Accuracy Accuracy Accuracy
AlexNet 99.47% 97.86% 93.58% 94.65%
ResNet50 98.40% 98.93% 96.79% 97.33%
GoogleNet 98.40% 96.79% 97.33% 94.12%

Frequency range 4 - 112 Hz
Windowsize, windowstep (s) - tapers 1, 0.1 - 3, 5 1, 0.1 - 4, 2 2, 0.5 - 3, 5 2, 0.5 - 4, 2

Accuracy Accuracy Accuracy Accuracy
AlexNet 98.40% 100.00% 98.93% 96.79%
ResNet50 99.47% 99.47% 99.47% 97.86%
GoogleNet 99.47% 99.47% 97.86% 97.33%
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Table 8.26: Accuracy for spectrogram images computed for the whole piezosig-
nal with Sonic Visualizer library and then segmented.

Window size, overlap 256, 93.75%
Accuracy

AlexNet 100.00%
ResNet50 96.79%
GoogleNet 96.26%

Tables 8.24, 8.25 and 8.26 show the accuracy results after using the AlexNet,

ResNet50 and GoogLeNet networks for the images calculated using MATLAB

spectrogram, Chronux library and Sonic Visualizer.

The tables indicate that all results return values above 93% accuracy. In

some cases it reaches 100% as in the case of the AlexNet network for the Chronux

and Sonic Visualizer images. Values above 99% are also obtained for images

calculated with Chronux, in various configurations, and MATLAB, using the

Chebyshev window.

8.3 Discussion

In this Chapter we report a classification approach to discriminate 2 different

strains. For that, we have chosen to analyse locomotion periods, as they can be

easily extracted by applying Computer Vision techniques.

Once the locomotion periods have been obtained, this work establishes two

different approaches. In the first approach, the spectrogram calculation is per-

formed on the signal chunks corresponding to the locomotion periods, so that

the result is not influenced by the behavior before and after the periods of inter-

est. In the second approach, the spectrogram of the whole signal is calculated

and the locomotion periods are extracted from this spectrogram, so that the

preceding and following behavior will influence the results of the segmented

periods. In addition, three different methods have been used to compute the
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spectrogram by varying some parameters in order to perform comparative stud-

ies: MATLAB, Chronux and Sonic Visualizer.

Comparing the results obtained after classification, the best accuracy values

are mostly obtained with the second approach, e.g. using the MATLAB spectro-

gram function with a Hamming window together with boosted trees and bagged

trees. However, Gaussian Naive Bayes performs better with the first approach.

Similarly, for a Tukey window, the first approach is better with cubic SVM

while the second approach is better for fine trees. As for the Chebyshev win-

dow, the accuracy results obtained are better for the second approach with fine

trees, logistic regression, weighted k-NN, bagged trees and boosted trees, while

the first approach gives better results with Gaussian Naive Bayes. Regarding

the Chronux library, for the frequency range of 1.5 - 40 Hz, better results are

obtained for the second approach with linear discriminant, kernel naive Bayes,

all SVM, medium k-NN, cosine k-NN and weighted k-NN, and for the frequency

range of 4 - 112 Hz, the first approach is better with fine k-NN and the sec-

ond approach is better with kernel naive Bayes, fine Gaussian SVM and bagged

trees.

On the other hand, better results are obtained by computing spectrogram of

the whole signal and the spectrogram function of MATLAB with a Chebyshev

window.

Regarding the classification results using images applying transfer learning,

the minimum accuracy obtained is 93.05% and the maximum is 100% with

AlexNet using the images generated with the spectrograms of Sonic Visualizer

or the Chronux library.

This Chapter also presents the training and evaluation times of the algo-

rithms used for classification, the fastest methods are the machine learning algo-

rithms implemented in MATLAB and MLP implemented in Python. The com-
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putation times for the pre-trained models range from 35 minutes with AlexNet

to 4 hours with ResNet50. These execution times are very small compared to

the good results they offer in terms of accuracy and AUC.

To sum up, it is concluded that it is possible to perform strain classification

for mice, using a recording system composed of the Phenotypix piezoelectric

platform and a top camera. This system allows experiments to be carried out in

a non-invasive way without inhibiting the behavior of the animals and also offers

high sensitivity, making it possible to establish differences between different

strains and classify them with high accuracy and AUC values.



Chapter 9

Conclusion

This Chapter summarizes the conclusions after this Thesis work. Section 9.1

provides the findings and contributions derived from this Thesis. Subsections

9.1.1 and 9.1.2 comment separately the findings in SLAM applications with Li-

DAR and the results obtained in Computational Ethology, respectively. Section

9.2 provides the future work derived from the contribution of this Thesis.

9.1 Summary of Findings and Contributions

In this Section we summarize the findings and contributions generated in this

Thesis for the two fields of knowledge.

9.1.1 SLAM Applications with LiDAR

Light detection and ranging (LiDAR) sensors have been used for scanning, re-

construction of environments. The fusion of LiDAR with GPS allows for large

scale navigation of autonomous systems, where Simultaneous localization and

mapping (SLAM) is a highly relevant. Accurate sensing provided by range sen-

sors such as the LiDARs improve the speed and accuracy of SLAM, which can

123
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become an integral part of the control of innovative autonomous vehicles.

Recently, LiDAR based SLAM is becoming affordable by new sensors such

as the M8 Quanergy LiDAR. However, these sensors offer less quality data

and lower resolution that hinders the performance of registration methods. The

Deep Learning based approaches seem to be sensitive to these data flaws. Specif-

ically, we have experimented with a state-of-the-art Deep Learning based ap-

proach that failed to produce meaningful results after several attempts to carry

out transfer learning over a dataset collected indoors with one such affordable

sensors. Consequently, traditional methods appear to be more likely to output

better results than artificial intelligent based methods for these low-cost sensors.

In this regard, a comparison of three traditional registration methods applied

to the path estimation followed by the LiDAR sensor was provided; namely,

the Iterative Closest Points (ICP), Coherent Point Drift (CPD), and Normal

Distributions Transform (NDT) registration methods. For this benchmark ex-

periment, a dataset was collected with M8 Quanergy LiDAR in the 3 floor of

the Computer Science School of the UPV/EHU in San Sebastian. The results

obtained from this comparison showed both ICP and CPD methods had prob-

lems in turning parts of the path, losing the track of the sensor while point cloud

registering. On the other hand, NDT method was able to register the whole

dataset with high robustness comparing to the others methods. Nevertheless,

ICP was capable of constructing surfaces with more point cloud density than

NDT did. As a result, a hybrid point cloud registration method is proposed to

take advantage of the high accuracy provided by the classic ICP algorithm, and

the robustness of the NDT registration method. To test this second analysis,

a new dataset was recorded in the same location than the first one and the

results showed that the Hybrid Registration Algorithm (HRA) returns a better

reconstruction compared to the ICP and NDT methods separately.
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The contributions of this Thesis in SLAM application with LiDAR are the

following:

• Installation and configuration of M8 Quanergy LiDAR sensor and its

drivers for experimentation.

• Recording several datasets with different routes to implement SLAM al-

gorithms and upload the recordings in Zenodo.

• Creation the scripts with the algorithms in MATLAB to implement SLAM

by using the datasets recorded previously.

• Comparison of the results obtained from the traditional methods and ex-

tract conclusions to design a better algorithm.

• Creation of he Hybrid Registration Algorithm (HRA), based on the pre-

vious results, with the joint of the ICP and NDT methods.

• Obtaining a better reconstruction of the surface with the HRA proposed

in this Thesis.

9.1.2 Computational Ethology

Computational Ethology is a discipline that studies the behavior to understand

the causes and development of animal behavior, as well as to understand how it is

performed. By analysing the behavior is possible to extract characteristics from

them that allow us to describe them quantitatively. From a pharmacological

point of view, ethological experimentation give another possibility to test new

medicines, as it is capable of quantifying behaviors and comparing them between

different subjects.

This second contribution is a research question based on the hypothesis of

whether it is possible to differentiate phenotypes using a recording system com-

posed of the Phenotypix piezoelectric platform and a top camera by means of
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AI. To answer this research question, we have used data from animal experimen-

tation in a non-invasive recording system composed of a piezoelectric platform

and a to video camera. We have recorded two types of animals such as Wild-

type and Fmr1-KO subjects to try to discriminate with AI techniques. With

the data collected, we have developed a semi-automated algorithm to preprocess

the videos in order to obtain the centroid of the animal and compute its velocity

to filter locomotion periods. When the piezoelectric signal is synchronized with

the animal velocity data, we can apply two different approaches to obtain the

features and the images from the spectrogram with MATLAB, Chronux library

and Sonic Visualizer. The first approach segments the locomotion periods in

the piezoelectric signal to compute the spectrogram only in these chunks. The

second approach obtains the spectrogram for the whole piezoelectric signal to

filter in it the locomotion periods. In the first approach the chunks are not influ-

enced by the previous and following behaviors. On the other hand, in the second

approach, the chunks of signal are influenced by the surrounding behaviors.

The classifiers used in this contribution are the following:

• For feature classification:

– Machine Learning algorithms: SVM, decision Trees, k-NN, Naive

Bayes, Linear Discriminant, Logistic regression and its variants.

– Multi-Layer Perceptron

• For transfer learning based image classification:

– AlexNet

– GoogLeNet

– ResNet50

The results obtained from the classification algorithms show high accuracy with

the spectrogram computed with MATLAB, the Chronux library and Sonic Visu-
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alizer. The metrics show good results in strain classification in both approaches

but there are light differences depending on the algorithm and the parameters

for spectrogram computation. For instance, regarding the Chronux library, for

the frequency range of 1.5 - 40 Hz, better results are obtained for the second

approach with linear discriminant, kernel naive Bayes, all SVM, medium k-NN,

cosine k-NN and weighted k-NN, and for the frequency range of 4 - 112 Hz, the

first approach is better with fine k-NN and the second approach is better with

kernel naive Bayes, fine Gaussian SVM and bagged trees.

Image classification results obtained a minimum of 93.05% and the maximum

is 100% with AlexNet and the spectrograms computed with Sonic Visualizer and

the Chronux library.

To conclude, we are capable of answering the research question proposed: it

is possible to discriminate animal models with data from a piezoelectric platform

and a video camera and AI based classifiers.

The contributions of this Thesis in Computational Ethology are the follow-

ing:

• Development of a pipeline to process video recordings from animal exper-

imentation.

• Development of an algorithm to extract features from a recording system

composed of a piezoelectric platform and a video camera.

• Application of AI techniques for animal model classification based on fea-

tures.

• Application of transfer learning approaches for animal model classification

based on images.

• Comparison of the results obtained from different AI-based approaches.

• Answer the research question proposed in this Thesis.
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9.2 Future Work

As future work, we would like to continue with results obtained in Computa-

tional Ethology. In fact, members of the Computational Intelligence Group are

currently collecting data from a walking platform and an electroencephalogram

(EEG) to identify gait anomalies as a part of an experimental study on healthy

ageing in the elderly. This way, the idea is to take advantage of the knowledge

acquired in this Thesis to process the data and try to predict a syndrome that

affects to elderly, namely fragility, in the early stages to mitigate its effects,

improving the quality of life of the society.
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