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Introduction Structure of the Thesis

Abstract Contribution 1
Contribution about LiDAR Based SLAM

LiDAR sensors are used for scanning and reconstruction of indoor and outdoor
environments.

SLAM is one of the applications that takes advantage of this sensors, improving
the speed and accuracy.

There exists many brands LiDAR with di�erent speci�cations. For this
contribution we want to test quality of low-cost M8 Quanergy LiDAR.

Due to the low resolution, unable to apply Deep Learning based approaches to
these sparse data.

Implementation of traditional methods based algorithm for SLAM to check result
quality by using:

▶ Iterative Closest Point
▶ Coherent Point Drift
▶ Normal Distribution Transform

We propose a hybrid SLAM algorithm that achieves accurate results over in-house

datasets captured with the low-cost LiDAR sensor.
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Introduction Structure of the Thesis

Abstract Contribution 2
Contribution to Computational Ethology

Computational Ethology

▶ discipline that studies the animal behavior making use of the advances in
Computer Vision and Arti�cial Intelligence.

▶ quantitative approach to compare the e�ect of new medicines in di�erent
subjects.

There exist a wide variety of sensors for experimentation. In this Thesis, data were
collected with a piezoelectric platform and a top camera.

Research question proposed: Is it possible to discriminate di�erent phenotypes
with data from piezoelectric signal by using Arti�cial Intelligence techniques?

We propose a pipeline to obtain behavioral data for locomotion periods to train
the models.

An exhaustive exploration with Machine Learning based methods, Neural Networks
and Convolutional Neural Networks to answer this research question.

Concluding that it is feasible to discriminate phenotypes on the basis on pressure

signal and Arti�cial Intelligence.
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Contribution to LiDAR Based SLAM Background and State of the Art

Background

SLAM (Simultaneous localization and mapping) is widely used in
robotics to create maps and estimate the path.
Sensors used in SLAM:
▶ Light detection and ranging (LiDAR) sensors:

based on a light beam that computes distances from the sensor to
surrounding obstacles creating a point cloud that represents the
enviornment.
Many brands: Velodyne, SICK, Hokuyo,...
Can be mounted in ground vehicles, unmanned aerial vehicles (UAV) or
manually.
Other sensors can go with LiDAR: cameras, inertial measurement units
(IMU), navigation systems (GNSS, GPS)...

8



Contribution to LiDAR Based SLAM Background and State of the Art

State of the Art

There exist many LiDAR applications:

SLAM + Robotics

Remote sensing: Forestry data analisys, urban landscape creation, industrial
measurements...

Autonomous driving: real-time navigation, road inventories...

3D mapping: tree crop location, analysis of coastal barriers, surveying...

Computational approaches:

Traditional methods:
▶ The Iterative Closest Point method
▶ The Normal Distribution Transform method
▶ LOAM (LiDAR Odometry and Mapping)

Arti�cial intelligent methods:
▶ Machine learning algorithms
▶ Neural Networks
▶ Reinforcement learning

Data resources:

Public data repositories

Simulation environments
9
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Contribution to LiDAR Based SLAM Motivation and Objectives

Motivation and Objectives

Experimentation with LiDAR M8 Quanergy

Data processing for SLAM applications

Preliminary study to compare three traditional methods:
▶ Iterative Closest Point
▶ Coherent Point Drift
▶ Normal Distribution Transform

Proposal of a new hybrid method that improves the accuracy of the
algorithm.
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Contribution to LiDAR Based SLAM In-House LiDAR Datasets

LiDAR M8 Quanergy
Low-cost LiDAR with Time-of-Flight (TOF) Technology

Parameter M8 sensor speci�cations

Detection layers 8

Returns 3

Minimum range 0.5m (80% re�ectivity)

Maximum range >100m (80% re�ectivity)

Spin rate 5Hz - 20Hz

Intensity 8 bits

Field of view Horizontal 360° - Vertical 20° (+3°/-17°)

Data outputs Angle, Distance, Intensity, Synchronized Time Stamps
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Contribution to LiDAR Based SLAM In-House LiDAR Datasets

Location and Experimental Settings

Location: 3rd �oor of the Computer Science School of the UPV/EHU
in San Sebastian.

LiDAR on a manually-driven mobile platform.

In-house Dataset #1 In-house Dataset #2
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Contribution to LiDAR Based SLAM In-House LiDAR Datasets

The Failure of Deep Learning

M8 Quanergy sensor fails with novel state-of-the-art methods, such as
Deep Global Registration1.
Due to the low resolution of this low-cost LiDAR compared to others
brands:
▶ M8 Quanergy LiDAR: 8 lasers and 1.3M points/s.
▶ Kitti Dataset used in Deep Global Registration � Velodyne HDL-64E:

64 lasers and 2.2M points/s.

Traditional methods to validate the quality of M8 Quanergy LiDAR
measurements.

1
Choy, C., Dong, W., Koltun, V., Deep global registration (2020) Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, art. no. 9157005, pp. 2511-2520.
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Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

Point Cloud Registration

Given 2 point clouds in time t1(reference) and t2 (moving), where
t1 < t2:
▶ Find the best transformation matrix to match both point clouds.
▶ Apply this transformation to the moving point cloud.

Merge the resulting point cloud with the reference point cloud.

The result obtained is a new point cloud with more information.
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Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

Generic SLAM Framework
General diagram of point cloud registration algorithm.

19



Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

Generic SLAM Framework
General template of point cloud registration algorithm.

Input: sequence of point clouds {N (t)}Tt=0 captured by the LiDAR
Output: overall point cloud M (T ), sequence of registered transformations
{Tt}Tt=1

For t = 0, . . . , T

1 N (1) (t)← remove ground plane from N (t)

2 N (2) (t)← remove ego-vehicle from N (1) (t)

3 N (3) (t)← down-sample N (2) (t)

4 If t = 0 then M (0) = N (3) (t); GOTO For

5 (Tt, et)← register Tt−1

(
N (3) (t)

)
to M (t− 1)

6 N (4) (t)← Tt
(
N (2) (t)

)
7 M (t)← merge

(
M (t− 1) , N (4) (t)

)
20



Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

The Iterative Closest Point (ICP) method2

Given 2 data sets: P with Np points and X with Nx points:

Initialize the vector P0 = P , the iteration k = 0 and the quaternions
q̄0 = [q̄R|q̄T ]t = [q0q1q2q3|q4q5q6]t = [1, 0, 0, 0|0, 0, 0]t

Repeat this loop until convergence with threshold τ :

▶ Compute the closest points between Pk and X: Yk = C (Pk, X).
▶ Compute the registration: (q̄k, dk) = Qk (P0, Yk):

Calculate cross-covariance matrix Qk (P0, Yk), and compute the
eigenvalues and unit eigenvectors that are ¯qRk.
Calculate ¯qTk = µ̄x −R( ¯qRk)µ̄p, where µ is the center of mass of each
point set and R the rotation matrix, both known.
Obtain the transformation matrix q̄k = [ ¯qRk| ¯qTk]

t and the mean square
error dk.

▶ Apply the matrix to the point P0 , Pk+1 = q̄k (P0).
▶ Compute the mean square error d: If dk − dk+1 < τ , �nish the loop.

2
P. J. Besl and N. D. McKay, "A method for registration of 3-D shapes", IEEE Transactions on Pattern

Analysis and Machine Intelligence 14, 2 (1992), pp. 239-256.
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Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

The Coherent Point Drift (CPD) method3

Formulates the alignment of 2 point clouds as a probability density estimation
problem:

▶ point cloud Y = {yi}Mi=1 represents the Gaussian Mixture Model (GMM)
centroids,

▶ point cloud X = {xi}Ni=1 represents the data points generated by these
centroids.

The GMM probability density function is p (x) = ω 1
N

+ (1− ω)
∑M

m=1
1
M
p (x |m ).

We obtain the GMM centroids locations minimizing the log-likelihood function:

E
(
θ, σ2

)
= −

∑N
n=1 log

∑M
m=1 P (m) p (x |m ),

where θ is the rotation, translation and scale parameters and σ2 is the covariance.

We apply Expectation-Maximization (EM) algorithm to �nd θ and σ2, minimizing
the objective function:

Q = −
∑N

n=1

∑M
m=1 P

old (m |xn ) log (P
new (m) pnew (x |m )) .

3
A. Myronenko and X. Song, "Point Set Registration: Coherent Point Drift", IEEE Transactions on Pattern

Analysis and Machine Intelligence 32, 12 (2010), pp. 2262-2275.
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Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

The Normal Distribution Transform (NDT) method4

The approach is similar to the occupancy grids.

The space is divided in cells, where the probability of a sample falls in a cell is:
p(x) ∼ N(q,Σ).

Let be the spatial mapping T :

(
x′

y′

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
x
y

)
+

(
tx
ty

)
▶ Build the NDT of the �rst scan.
▶ Initialize the estimate for the parameters of the mapping T .

Repeat this loop until convergence:

▶ For the second scan, apply mapping T .
▶ Determine the corresponding normal distribution for each mapped point, q

and Σ.

▶ Compute score function: score(p̄) =
∑

i exp

(
−(x̄i

′−q̄i)
t ∑−1

i (x̄′
i−q̄i)

2

)
, where

p̄ is the parameter vector to estimate.
▶ Calculate the parameters vector p̄ by optimizing the score function with

Newton's Algorithm.

4
Peter Biber and Wolfgang Straÿer, "The Normal Distributions Transform: A New Approach to Laser Scan

Matching", in vol. 3, (2003), pp. 2743 - 2748 vol.3.
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Contribution to LiDAR Based SLAM SLAM Algorithms for LiDAR Data

Hybrid Point Cloud Registration Algorithm

Input: sequence of point clouds {N (t)}Tt=0 captured by the LiDAR
Output: overall point cloud M (T ), sequence of registered transformations
{Tt}Tt=1

Method = �ICP�
For t = 0, . . . , T

1 N (1) (t)←remove ground plane from N (t)

2 N (2) (t)← remove ego-vehicle from N (1) (t)

3 N (3) (t)← downsample N (2) (t)

4 If t = 0 then M (0) = N (3) (t); GOTO step 1

5 (Tt, et)← register Tt−1

(
N (3) (t)

)
to M (t− 1) using Method

6 If et > θe then Method = �NDT�; GOTO step 5

7 N (4) (t)← Tt
(
N (2) (t)

)
8 M (t)← merge

(
M (t− 1) , N (4) (t)

)
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #1
Registration of the cloud points before reaching the turning point (left) and the estimated
trajectory (white dots) and registered cloud of points using ICP (right).
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #1
Registration of the cloud points before reaching the turning point (left) and the estimated
trajectory (white dots) and registered cloud of points using CPD (right).
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #1
Estimated trajectory and registered cloud of points using NDT.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #1
Projection of the NDT registered point cloud on the plan of the building.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #1
Evolution of the logarithmic registration error for NDT, CPD, and ICP methods.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #2
Projection of the ICP registered point cloud on the plan of the building with the
estimated trajectory.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #2
Projection of the NDT registered point cloud on the plan of the building with the
estimated trajectory.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #2
Projection of the HRA registered point cloud on the plan of the building with the
estimated trajectory.
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Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #2
Time evolution of the registration RMSE for NDT, ICP, and HRA methods.

34



Contribution to LiDAR Based SLAM Results of SLAM Experiments

Results over the In-house Dataset #2
Performance of ICP, NDT, and HRA methods along the experimental path.

ICP method NDT method HRA method

Maximum RMSE 0.4136 0.2841 0.2522

Median RMSE 0.0835 0.0589 0.0554

Cumulative RMSE 265.29 187.21 176.20
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Contribution to LiDAR Based SLAM Conclusion

Conclusion

Evaluation of M8 Quanergy LiDAR in SLAM application in two in-house datasets.

▶ The SLAM algorithm includes point cloud pre-processing, registration,
transformation and merger.

Report a comparison between three registration methods for point cloud
registration:

▶ Iterative Closest Point (ICP).
▶ Coherent Point Drift (CPD).
▶ Normal Distribution Transform (NDT).

Proposition of a novel Hybrid Point Cloud Registration Algorithm (HRA):

▶ ICP + NDT.

Results:

▶ ICP and CPD obtain larger error than NDT for the dataset #1.
▶ NDT is better than ICP and CPD in turning points for the dataset #1.
▶ HRA improves both ICP and NDT RMSE for dataset #2.
▶ HRA obtains better reconstruction than ICP and NDT for dataset #2.
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Contribution to LiDAR Based SLAM Conclusion

Publications Produced about this Topic

1 Aguilar-Moreno, M., Graña, M. (2021). A Comparison of Registration
Methods for SLAM with the M8 Quanergy LiDAR. In: Herrero, Á., Cambra,
C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds) 15th
International Conference on Soft Computing Models in Industrial and
Environmental Applications (SOCO 2020). Advances in Intelligent Systems
and Computing, vol 1268. Springer, Cham.

2 Aguilar-Moreno, M., Graña, M. (2020). An Hybrid Registration Method for
SLAM with the M8 Quanergy LiDAR. In: de la Cal, E.A., Villar Flecha, J.R.,
Quintián, H., Corchado, E. (eds) Hybrid Arti�cial Intelligent Systems. HAIS
2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham.

3 Aguilar-Moreno, M., Graña, M. (2022), On registration methods for SLAM
with low resolution LiDAR sensor, Logic Journal of the IGPL; jzac037,
https://doi.org/10.1093/jigpal/jzac037.
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Contribution to Computational Ethology Background and State of the Art

Background

Behavior:

The set of muscular responses of a living being because of an external stimulus
and internal motivation.

Computational Ethology (CE):

Discipline that studies the animal behavior.

Using the advances in Computer Vision and Arti�cial Intelligence.

Focused on the natural behavior to perform real-world tasks

In unrestricted environments.

Quantitative behavior characterization.

Pharmacological point of view: CE is useful to test new medicines comparing the e�ect
in di�erent subjects, obtained by genetic modi�cation.
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Contribution to Computational Ethology Background and State of the Art

State of the Art

Sensors:

RGB / depth / infrared cameras

Pressure sensors

Inertial sensors

Microphones

Applications based on Arti�cial Intelligence:

Tracking applications: DeepLabCut, Bonsai, SLEAP, ...

Behavior classi�cation: JAABA, DeepEthogram, VAME, ...

Strain classi�cation: SVM, k-NN
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Contribution to Computational Ethology Motivation and Objectives

Motivation and Objectives
Research question proposed:

Is it possible to implement a strain classi�er from pressure signal and
Arti�cial Intelligence?

We focus on:
▶ Spectrogram from piezoelectric signal

Features
Images

▶ Locomotion periods.

Application of Arti�cial Intelligence techniques.
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Contribution to Computational Ethology Materials for Experimentation

Animal and Experimentation

12 mice with 2 di�erent strains:

7 wild-type (WT): non-mutated gene.

5 transgenic Fmr1-knockout (Fmr1-KO): animal model to study Fragile X
Syndrome.

Recording system:

Opaque-walled cage

Base: piezoelectric platform with 3
sensors (20 kHz)

Top video camera (25 fps)

Computer with Spike software to
record piezoelectric signal.

Animals introduced individually.
Procedure in accordance with EU directives for animal protection.
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Behavioral Data Processing
Data processing pipeline
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Behavioral Data Processing
Bonsai5 Pipeline for Video Processing

5https://bonsai-rx.org/
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Behavioral Data Processing
Data processing pipeline
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Contribution to Computational Ethology Methods for Data Processing

Parameters for Spectrogram Computation
Parameters for Spectrogram Computation with Chronux Library and Images

Parameters Value 1 Value 2 Default values

Window size (s) 1 2 -

Windows step (s) 0.1 0.2 -

Tapers [4, 2] [3, 5]

[3, 5]: A numeric vector [TW K] where TW

is the time-bandwidth product and K is the

number of tapers, less than or equal to 2TW-1

Frequency of interest (Hz) [1.5 - 40] [4 - 112] [0 - Fs/2] (Fs: sampling frequency)
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Contribution to Computational Ethology Methods for Data Processing

Parameters for Spectrogram Computation
Parameters for Spectrogram Computation with Sonic Visualizer and Images

Parameter Value Range of values

Colour Green [Green, Sunset, ... , Wasp, Ice, ...]

Scale dB [Linear, Meter, dB^2, dB, Phase]

Window size 256 [32, 64, 128, 256, 512, ... , 16384, 32768]

Overlap 93.75% [none, 25%, 50%, 75%, 87.5%, 93.75%]

Show All bins [All Bins, Peak Bins, Frequencies]

Scale Linear [Linear, Log]
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Contribution to Computational Ethology Methods for Data Processing

Parameters for Spectrogram Computation
Parameters for Spectrogram Computation with MATLAB and Images

Parameters Value 1 Value 2 Value 3 Range of values

Number of sections 8 4 - Integer

Overlap 0.5 0.1 - [0 - less than window]

Window Hamming Chebyshev Tukey
[Bartlett-Hann, Bartlett,

Gaussian ,..., triangular]
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Contribution to Computational Ethology Methods for Data Processing

Formulation Problem and AI based Models

Binary classi�cation problem to discriminate two phenotypes:
▶ WT (class 0)
▶ Fmr1-KO (class 1)

Inputs for classi�cation:
▶ Spectrogram features
▶ Spectrogram images

Models:
▶ Machine learning models
▶ Neural Network
▶ Convolutional Neural Networks + Transfer learning
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Contribution to Computational Ethology Methods for Data Processing

Models for Classi�cation
Machine Learning Models

Decision trees

Linear discriminant analysis

Logistic regression

Gaussian Naive Bayes

SVM

k-NN

Boosted trees

Bagged trees

Subspace discriminant

Subspace k-NN

RUSBoosted trees

Experiments Chronux MATLAB Sonic Visualizer Total

Segmented chunks 8 12 - 20

Whole spectrogram 8 12 1 21

Total 16 24 1 41
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Contribution to Computational Ethology Methods for Data Processing

Models for Classi�cation
Neural Network

Multi-layer Perceptron (MLP)

Parameters selected with a grid search:
▶ 255 batch size
▶ 700 epochs
▶ Adam optimizer

MLP layers Neurons
Activation Dropout

function normalization

Input layer variable - -

First hidden layer 400 relu 0.2

Second hidden layer 200 relu -

Third hidden layer 60 relu -

Fourth hidden layer 35 relu -

Output layer 1 sigmoid -
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Contribution to Computational Ethology Methods for Data Processing

Models for Classi�cation
Convolutional Neural Networks with Transfer Learning

AlexNet

GoogLeNet

ResNet50

Parameter Value

Solver Adam

Learning rate 0.0001

Mini batch size 52

L2 Regularization 0.0001

Folds for Cross-validation 5

Algorithm Layers Total learnables

AlexNet 25 (depth 8) 56 876 418

ResNet50 177 (depth 50) 23 538 690

GoogLeNet 144 (depth 22) 5 975 602
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Contribution to Computational Ethology Methods for Data Processing

Model Training and Evaluation

Dataset divided into two parts:
▶ 80% train set
▶ 20% test set

5-fold cross-validation

Metrics: Accuracy, AUC, Recall, Precision, F1 score

Algorithm Execution time

Machine Learning algorithms ≈ 1s

MLP ≈ 2min

AlexNet ≈ 35min

ResNet50 ≈ 4h

GoogLeNet ≈ 2h
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Results
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Contribution to Computational Ethology Results in Computational Ethology

Results with Machine Learning Algorithms
Results for Di�erent Minimum Locomotion Duration
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Results with Machine Learning Algorithms
Results for Spectrogram Features Computed only for Segmented Chunks
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Results with Machine Learning Algorithms
Results for Spectrogram Features Computed from the Whole Signal
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Results with Transfer Learning
Results for Image Classi�cation with Chronux Library, MATLAB and Sonic Visualizer
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Conclusion

This work proposed the research question:
▶ Is it possible to discriminate phenotypes with pressure signals and

Arti�cial Intelligence?

Binary classi�cation problem with 2 di�erent animal models:
▶ Wild-type
▶ Fmr1-KO

Spectrogram from the pressure signal during locomotion periods:
▶ Chronux Library
▶ MATLAB
▶ Sonic Visualizer

Di�erent Machine Learning based methods, NN and CNN have been tested
with:
▶ Spectrogram features
▶ Spectrogram images

Yes, we can di�erentiate phenotypes with high accuracy, precision, recall and
F1 score.
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1 Aguilar-Moreno, M., Graña, M. (2023). Computational Ethology: Short
Review of Current Sensors and Arti�cial Intelligence Based Methods. In:
Iliadis, L., Maglogiannis, I., Alonso, S., Jayne, C., Pimenidis, E. (eds)
Engineering Applications of Neural Networks. EANN 2023. Communications
in Computer and Information Science, vol 1826. Springer, Cham.

2 Aguilar-Moreno, M., Graña, M. (2023), Phenotype Discrimination based on
pressure signals by transfer learning approaches, International
Work-Conference on Arti�cial Neural Networks (IWANN 2023), accepted
and presented in Congress.
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Conclusion and Findings in LiDAR Based SLAM

Installation and con�guration of M8 Quanergy LiDAR sensor.

Recording several datasets to implement SLAM algorithms.

Comparison of the results obtained with three traditional methods:
▶ Iterative Closest Point
▶ Coherent Point Drift
▶ Normal Distribution Transform

Proposal of he Hybrid Registration Algorithm (HRA) with the joint of
the ICP and NDT methods.

Obtaining a better reconstruction of the surface with the HRA
proposed in this Thesis.
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Conclusion and Findings in Computational Ethology

Development of a pipeline to process data from a recording system
composed of a piezoelectric platform and a video camera:
▶ Spectrogram features
▶ Spectrogram images

Application of AI techniques for animal model classi�cation.

Answer the research question proposed in this Thesis.
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Other Results and Awards

1 Graña M, Aguilar-Moreno M, De Lope Asiain J, Araquistain IB, Garmendia
X. (2020). Improved Activity Recognition Combining Inertial Motion Sensors
and Electroencephalogram Signals. Int J Neural Syst. 2020;30(10):
2050053. https://doi.org/10.1142/S0129065720500537.

2 Second prize in the INIZIA 2023 call for proposals in the category of New
Innovative Initiatives organised by BIC ARABA.

3 Finalist in the Manuel Laborde Werlindel 2022 call in the category of New
Innovative Initiatives organised by BIC Gipuzkoa.
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Future Work in Computational Ethology

Apply the approach tested in the second contribution in an
experimental study on healthy ageing in the elderly.

The study is about fragility, which is a syndrome that a�ects to elderly.

Predict this syndrome in early stages to mitigate its e�ects, improving
the quality of life of the society.
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Appendix

The Iterative Closest Point (ICP) method

Given 2 data sets: P with Np points and X with Nx points:

Initialize the vector P0 = P , the quaternions
q̄0 = [q̄R|q̄T ]t = [q0q1q2q3q4q5q6]

t = [1, 0, 0, 0, 0, 0, 0]tand the iteration index k = 0

Repeat this loop until convergence with threshold τ :

▶ Compute the closest points between Pk and X: Yk = C (Pk, X).
▶ Compute the registration: (q̄k, dk) = Qk (P0, Yk):

Calculate cross-covariance matrix Qk (P0, Yk), and compute the
eigenvalues, whose unit eigenvectors are ¯qRk, corresponding to the
maximum eigenvalue is the optimal rotation.
Calculate ¯qTk = µ̄x −R( ¯qRk)µ̄p, where µ is the center of mass of each
pointset and R the rotation matrix, both known.
Obtain the transformation matrix q̄k = [ ¯qRk| ¯qTk]

t and the mean square
error dk.

▶ Apply the matrix to the point P0 , Pk+1 = q̄k (P0).
▶ Compute the mean square error d: If dk − dk+1 < τ , �nish the loop.
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The Coherent Point Drift (CPD) method I

Formulates the alignment of 2 point clouds as a probability density estimation
problem:

▶ point cloud Y = {yi}Mi=1 represents the Gaussian Mixture Model (GMM)
centroids,

▶ point cloud X = {xi}Ni=1 represents the data points.

Registration tries to maximize the likelihood X as a sample of the probability
distribution modeled by Y after the application of the transformation T (Y, θ),
where θ are the transformation parameters.

▶ The GMM model is formulated as p (x) = ω 1
N

+ (1− ω)
∑M

m=1
1
M
p (x |m )

▶ All Gaussian conditional distributions are isotropic with the same variance

σ2, i.e. p (x |m ) =
(
2πσ2

)−D/2
exp

(
∥x−ym∥2

2σ2

)
.

▶ We parametrize the GMM centroids locations by a set of parameters θ and
estimate them maximizing the likelihood or minimizing the log-likelihood
function: E

(
θ, σ2

)
= −

∑N
n=1 log

∑M
m=1 P (m) p (x |m ).
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The Coherent Point Drift (CPD) method II

We apply Expectation-Maximization (EM) algorithm to �nd θ and σ, minimizing
the objective function:
Q = −

∑N
n=1

∑M
m=1 P

old (m |xn ) log (P
new (m) pnew (x |m )) .

For rigid transformations, the objective function takes the shape:

Q
(
R, t, s, σ2) =

1

2σ2

N,M∑
n,m=1

P old (m |xn ) ∥xn − sRym − t∥2 + NpD

2
log σ2,

such that RTR = I, det (R) = 1.
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The Normal Distribution Transform (NDT) method

Given 2 point clouds, build the NDT model of the �rst scan:

▶ The space is divided in cells that has at least 3 points to:

Collect all points xi=1..n.
Calculate the mean q̄= 1

n

∑
i x̄i,

Calculate the covariance matrix Σ = 1
n

∑
i (x̄i − q̄) (x̄i − q̄)t .

▶ The spatial mapping T :

(
x′

y′

)
=

(
cosϕ −sinϕ
sinϕ cosϕ

)(
x
y

)
+

(
tx
ty

)
Initialize the estimate for the parameters of the mapping T .

▶ Repeat this loop until convergence:

For the second scan, map the points into the coordinate frame of the
�rst scan according to the parameters.
Determine the corresponding normal distribution for each mapped
point.

Compute score function: score(p̄) =
∑

i exp

(
−(x̄i

′−q̄i)
t ∑−1

i (x̄′
i−q̄i)

2

)
.

Calculate the parameters vector p̄ by optimizing the score function with
Newton's Algorithm.
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