& “ s, 0

;w%o
ey WL &
w2 ; ey
©)

7/"’0. ! oo
Stockholms
universitet

Using User-centred Knowledge
Model (t-UCK) as a Modelling
Support

Anne Hakansson

Stockholm University
Anne.Hakansson@dsv.su.se

25/5/09

The ultimate solution

25/5/09

Reality

Mental model Conceptual model Conceptual model Mental model

G-
7

Formalisation

Domain expert End user

25/5/09

Need for t-UCK

e Modelling knowledge-intensive systems
— Disseminate knowledge within organisations

— Support using knowledge in new/other situations

 Incorporate the users

— Supply/ use required knowledge, change/ understand
reasoning strategy, provide, utilse additional

functionality

e Support using and understanding the contents of the
system

— Provide same views of the contents

25/5/09

The User-centred knowledge
model

 Knowledge transfer
— Design user(s) - System - End users
— Transfer domain specific knowledge

— Involves knowledge acquisition / elicitation

* Conceptual design

— Bridge the gap between design model - user model

* Conceptual model

— Modelling view and Consulting view

25/5/09

The User-centred knowledge

model
Creation Capture Storage Dissemination
Design model Conceptual Design User model
o as C°C.‘°‘$‘V'J'”g
V\/Conceptual Model
Design user End user

Knowledge acquisition

Knowledge transfer

25/5/09

Conceptual model

Framework for Developing and Consulting

Clarify different terms and support applying
these

(questions - rules - conclusions)
Constitutes the Graphical User Interface

Transparent and reflects the contents

25/5/09

Modelling view and
Consulting view

* Support a number of tasks and users

* Design user views for learning and designing
— Evaluate contents and reasoning

— Find lack of knowledge and faults

* End user views for learning and operating
— Understand conclusions and reasoning

— Find values, rules and understand reasoning

25/5/09

User Interface

Development

q:Question object

reply fact

. Execute srsnensnnesiranranen
Design user End User :Rule No - Rule Name
Change Question - srsessssnnsandanen Srrrasrrrssssasrrsannannnnang
— —~ Rule Object Name i
_—— Change Rule Consult the — check rule :
—_— given answers. P e check rule H
Change Conclusion - - reply fact
/ Fetch old session / > H

List knowledge bases)

Save session

. rebly fact

q:Question object Answer
reply fact
Present q:Question object

List database

Class: Rule

Class: Question

Class: Conclusion

nclusion ¥ -
conclusion ¥
: [:j *q: Resulting Question Object Name l

c: Conclusion object

Rule number

Rule Object Name
Conclusion Object
Certainty factors

Facts (Question Object)

Question Object Name

!] Conclusion Object
Question Formulation Conclusion Text
Alternative Answers

Answers Choice Type

Resulting Question/s call
Rules (and/or/not) Input 1 1: check rule
_tlr: Rule Name/ Object Name
Input 2 _—

Input1 1.1: check answer

Question Object 1

r: Rule name

4: present conclusion

1.2: check answer

¢: Conclusion Input 2

Question Object Name

Question Formulation

Alternative Answers

Answers Choice Type

Resulting: Question Object Name

Rule number

Rule Object Name
Conclusion object

Certainty factors

Facts (Question Object Name
Rule Object Name (and/or/not)

Conclusion Object

Conclusion Text

Question Object Name
Question Formulation
Alternative Answers

Answers Choice Type

Resulting: Question Object Name

r: Rule name

¢: Conclusion

Rule number
Rule Object Name
Conclusion object

Certainty factors

Rule Object Name (and/or/not)
Facts (Question Object Name)|

Conclusion Object

Conclusion Text

initial state

25/5/09

Question Object 4

3: check answer

Consulting

2: check answer

Question Object 3

initial state

final state

Result of the options

[not accepted]

UML Use Case diagram

Design user

/

—
N

Development

Change Question

Change Rule

Change Conclusion

List knowledge bases

Check consistency

Execute

Consult the
given answers

Fetch old session

Save session

List database

End User

* Describes the options to be performed and executed

— Design users use the system for developing

— End users use the system for advices / conclusions

25/5/09

10

UML Class diagram

: : Class: Rule
Class: Question Class: Conclusion
i : Rule number
Question Object : :
Rule Object Name Conclusion Object

Question Formulation Conclusion Text

Alternative Answers Conclusion Object
Certainty factors
Facts (Question Object)

Rules (and/or/not)

Answers Choice Type
Resulting Question/s

* Templates for questions, rules and conclusions
— Design users msert new question / rule / conclusion

— End users use these objects during consultation

25/5/09

UML Object diagram

q: Question

Question Object

Question Formulation

Alternative Answers

Answers Choice Type

Resulting: Question Object Name

q: Question

Question Object

Question Formulation
Alternative Answers

Answers Choice Type

Resulting: Question Object Name

r: Rule name

Rule number

Rule Object Name

Conclusion object

Certainty factors

Facts (Question Object)

Rule Object Name (and/or/not)

¢: Conclusion

Conclusion Object

Conclusion Text

I

r: Rule name

¢: Conclusion

Rule number
Rule Object Name
Conclusion object

Certainty factors
Rule Object Name (and/or/not)

Facts (Question Object)

Conclusion Object

Conclusion Text

25/5/09

12

UML Packages

1]

r: Rule name

g: Question name

|] |
q_: Question name r: Rule name . .
c: conclusion name
— —

¢: conclusion name

Packages encapsulate data

— decrease the complexity of the system.

— tightly connected rules can be put into a package

25/5/09

13

Sequence diagram

Rule Object Name Rule No 2 - Rule Name =

FE S EEEE NN E NN NN NN NN NN NN NS SN NN NS NN NN NN NN ENEEENEE =
L] |

check rule :

> — check rule Rule Object Name
or ﬂ .
. reply fact - - (-
q:Question object “|Answer | -
reply fact . . :
q ect “[Answer]2 i
re.p.l.y..f.‘a.(;t ...

q:Question object “[Answer |
reply fact

= Present | q:Question object |Answer |

. 41— i H
. conclusion = I:::I_’

y

g: Resulting Question Object Name

c: Conclusion object

Design users and end users can observe dependencies
between rules and facts (developing / explanations)

25/5/09 14

Collaboration diagram

call

1: check rule r: Rule Name

Input 1

Inputﬁ

r: Rule Name/ Object Name

/l

4: present conclusion
Input 2

c: Conclusion Name
3: check answer

Question Object 4

Input1 1.1: check answer
Question Object 1

1.2: check answer

2: check answer [Questi

Question Object 3

User provides inputs. Design users and end users can
observe mput effects on rules and conclusions.

25/5/09

15

UML State Chart diagram

initial state

[Option)\

(Option J

g (™ option 5

State chart diagram describes the options in the code
and dependencies of these options. Develop / Use
other functionalities (static).

25/5/09 16

UML Activity diagram

initial state

[not accepted]

[else]

@esult of the options)

final state

Activity diagram shows procedural behaviour of a
declarative representation. Develop / Use (dynamic)

25/5/09 17

Examples of KMS

e Visual knowledge modelling of information

logistics processes

— Sending e-invoice between companies:

o A SME sends an invoice to another SME that use
the same enterprise system

e A SME sends an invoice to an organization using
a well established enterprise system (e g SAP)

— Automatic configuration:
* Building rules from ARIS

25/5/09

18

Examples of KMS

 Communication protocol between
supplier (sender) - customer (receiver)

e Several different rules
Rulel - facts about the company
Rule2 - information about supplier ledger

Rule3 - kind of system the company uses: SME, SAP,
IFS, or MS-AS

Rule 4 - current state of the system

25/5/09

19

Examples of KMS

r:Customer object

reply fagt ~
» - -
Fustomer information | 'I Customer record

| r: SME object |
check rule I

<@
<

| r: Supplier object |

reply fagt -
| Supplier ledger | '| Supplier record

A 4

| r: Software object

reply fagt >
| Software information |

&
<

1: Customer system object

reply fagt

Customer system info | '| Customer system record

<@ |
<

Fresent
conclusio;l

| ¢: SME Solution |

A sequence diagram including rules in a knowledge base.

25/5/09 20

SME
Costumer_recors

Supplier record

Examples of KMS

call

1:check rule

r: SME_Solution »| - Customer_conclusion

Costumer_system_record

c: SME_Solution 4: check rule

S:present conclusion

2: check rule

r: Supplier conclusion

3:check answer

r: Costumer system conclusion

“Software _object” is “SME

A dynamic presentation of rules for a conclusion.

25/5/09

21

Examples of KMS 2

* Enterprise system configuration
— Configure automatically

— User specifies the contents

 Standard packages

— Modules

General Ledger, Fixed Assets, Sales & Receivables, Purchase
& Payables, Inventory, Manufacturing, Capital Requirements
Planning, Human resources

— Parameters

— Adjust system from the specification

— Building rules from requirements

25/5/09

22

Examples of KMS

Purchase
Order

Order to be
created

Price
Calculation
initiated

Price Calculation
comp keted

? Plan Producti Schedule

Production
Scheduling
initiated

=g

Verify
Production
Plan

Production
Scheduling
camplated

—0

25/5/09

Send Invoice

Invoice processed

23

Examples of KMS

Recehve
Purchase
Order

3
7 Plan Pr Schedule

Production
Scheduling
initiated

Verify
Schedule Production
Plan

Rule “Purchased order”->
Fact “Order to be created”
and

order” .

Rule “Receive purchase

25/5/09

24

Examples of KMS

. Rule

r: Purchased order

q: Process Invoice

check rule
-— check rule

reply fact

g: Order to be created Confirmed

check rule

—’ X
e———| r: Receive purchase

,.........-;M-....

check rule Rule |

r: Price calculation completed

check rule , Rulo |

r: Production scheduling completed

check rule , R ule |

Present <
« - . .
conclusion: r: Send invoice

c: Invoice processed

25/5/09

Questions ?

5555555

