Pruning an ensemble of classifiers via reinforcement learning **Authors**: Ioannis Partalas, Grigorios Tsoumakas, Ioannis Vlahavas **Journal**: Neurocomputing 72 (2009) 1900-1909 **Presentation**: Jose Manuel Lopez Guede #### Introduction I - Ensemble: a group of predictive models. - **Ensemble methods:** production and combination of multiple predictive models. - Used to increase the accuracy of single models. - They are a solution to: - Scale inductive algorithms to large databases. - Learn from multiple physically distributed datasets. - Learn from concept-drifting data streams (statistical properties of the objective variable change over the time). #### Introduction II - Ensemble methods phases: - (1): Production of the different models - Homogeneous: from different executions of the same algorithm (changing parameters) on the same dataset. - Heterogeneous: from different algorithm s on the same dataset. - (2): Combination of the different models - Voting, Weighted voting, etc. - Recently (1'5): Ensemble pruning: reduction of the ensemble size prior to the combination for 2 reasons: - Efficiency - Predictive performance #### Introduction III - Pruning an ensemble is NP-Complete: - Exhaustive search: not tractable with a large number of models. - Greedy approaches: fast, but may lead to suboptimal solutions. - This paper: - Uses Q-L to approximate an optimal policy of choosing whether to include or exclude each model from the ensemble. - Extensive experiments. - Statistical tests. # Background I #### Reinforcement Learning: - A problem is specified by a MDP: <S, A, T, R> - S: states $S_t \in S_t$ - A: actions $a_t \in A(s_t)$ - T: S x A -> S, transition function, new state S_{t+1} - R: S -> Real, reward function, $r_{t+1} \in \Re$ - Maximize the expected return R_t - Model of optimal behaviour: infinite-horizon discounted model - γ , $0 \le \gamma < 1$: discount factor $$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}.$$ ## Background II - Episodes: subsequences of actions - Terminal state: modeled as absorbing state - Absorbing state: only an action that leads back to itself. - $-\pi$: S x A->Real. Policy, $\pi(s,a)$ is the probability of taking the action a in the state s. - $-V^{\pi}(s)$: State-value function. Expected discounted return if the the agent starts from s and follows the policy π . $$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \middle| s_t = s\right\}$$ ### Background III $-Q^{\pi}(s,a)$: Action-value function. Expected discounted return if the agent starts executing a in state s following the policy π . $$Q^{\pi}(s, a) = E_{\pi} \{ R_{t} | s_{t} = a, a_{t} = a \}$$ $$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = a, a_{t} = a \right\}.$$ $-\pi^*$: optimal policy, maximizes the state-value $V^{\pi}(s)$ for all states, or the action-value $Q^{\pi}(s,a)$ for all state-action pairs. ### Background IV - To learn the optimal policy: - V*: optimal state-value function - Q^* : optimal action-value function: expected return of taking action a in state s following the policy π : $$Q^*(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \middle| s_t = s, a_t = a\right\}$$ – The optimal policy can be defined: $$\pi^* = arg \max_{a} Q^*(s, a)$$ - Q-L approximated the Q function: $$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$ ### Background V #### Ensemble methods: - (1) Producting the models: - Homogenous models: - Different executions of the same learning algorithm. - Different parameters of the learning algorithm. - Injecting randomness into the learning algorithm. - Methods: Bagging, Boosting. - Heterogeneous models: - Different learning algorithms on the same dataset. - Example: ANN, k-NN ### Background VI - (2) Combining the models: - There is no single classifier that performs significantly better in every classification problem. - Some domains need high performance: medical, financial, ... - Combine different models to overcome individual limitations ## Background VII - "Voting": each model outputs a value, and the value with more votes is the one proposed by the ensemble. - "Weighted Voting": it is like "Voting", but each model is weighted. Let x be an instance and m_i , i = 1 ... k a set of models that output a probability distribution $m_i(x, c_j)$ for each class c_j , j = 1 ... n. Output of the method y(x) for the instance x: $$y(x) = \arg\max_{c_j} \sum_{i=1}^k w_i m_i(x, c_j)$$ where w_i is the weight of the model i. ### **Background VIII** • "Stacked generalization"/"Stacking": combines multiple classifiers by learning a meta-level (or level-1) model that learns the correct class based on the decissions of the base-level (or level-0) classifiers. #### Related work - Heuristics to calculate the benefit of adding a classifier to an ensemble. - Stochastic search in the space if model subsets with a genetic algorithm. - Pruning using statistical procedures. - Generation of 1000 models and pruning. - ... ## Our approach I Problem: pruning an ensemble of classifiers $$C = \{c_1, c_2, \dots, c_n\}$$ - Ensemble pruning as a RL task: - States: pair (C', c_i) C': current ensemble, subset of C. c_i : classifier under evaluation. State space: $S = P(C) \times C$ P(C): powerset. Actions: in each state, there are only 2 actions (Total: 2n actions). $$A = \bigcup_{i=1}^{n} \{include(c_i), exclude(c_i)\}.$$ ### Our approach II #### – Episodes: - The task is modeled as an episodic task - It starts with an empty set of classifiers $s_0 = (\emptyset, c_1)$ - It lasts n steps. - At each time step t, the agent chooses to include or not the classifier c_t : $A(s_{t-1}) = \{include(c_t), exclude(c_t)\}$ - End: when the agent arrives at the final state s_n . - The presentation order of the classifiers is fixed. # Our approach III ### Our approach IV #### – Rewards: - Final transition: reward equal to the predictive performance of the ensemble of the final state (intentionally general to be more general). - Other transitions: 0 - Objective: maximize the performance of the final proned ensemble. ### Our approach V - The proposed algorithm: - ¿ –greedy action selection method: $$a = \begin{cases} \text{a random action with probability } \varepsilon, \\ \arg\max_{a'} Q(s, a') \text{ with probability } 1 - \varepsilon. \end{cases}$$ ## Our approach VI Pending idea – Function approximation methods: ¿weights of the ANN? - To tackle the problem of large state space. - Fill the values for every state-action pair in tabular form. - $Q_t(s, a)$ is a linear function of a parameter vector $\vec{\theta}_t$ (number of parameters equal to the number of features in the state). - Training phase: ANN - Input: vector with the features of the state. ¿only? - Output: estimation of the action value of the state. - Feature vector $\overrightarrow{\phi}$: - » First n coordinates represent the presence or the absence of a classifier. - » The last coordinate represent the classifier that is being tested. - (1) Initialize $\overrightarrow{\theta}$, $\overrightarrow{e_0} = \overrightarrow{0}$, ϵ and feature vector $\overrightarrow{\phi} = \overrightarrow{0}$ - (2) Repeat (for each episode): - (a) $s \leftarrow (\emptyset, c_1)$ - (b) Estimate $Q(s, include(c_1))$ and $Q(s, exclude(c_1))$ - (c) For each algorithm c_i - (i) $p \leftarrow RandomReal(0, 1)$ - (ii) If $p < \epsilon$ then (A) $a \leftarrow$ random action - (B) $\overrightarrow{e_0} = \overrightarrow{0}$ - (iii) Else (A) $a \leftarrow \arg \max_{a'} Q(s, a')$ - (B) $\overrightarrow{e} = \lambda \overrightarrow{e}$ - (d) $\overrightarrow{e} = \overrightarrow{e} + \phi_s$ - (e) Estimate $Q(s, a), \forall a \in A(s')$ - $-Q(s,a) = \sum_{i=1}^{n+1} \theta(i)\phi_s(i)$ (f) $a' \leftarrow \arg\max_a Q_a$ - (g) $\delta \leftarrow r + \arg\max_{a'} Q_{a'} Q_a$ - (h) $\overrightarrow{\theta} \leftarrow \overrightarrow{\theta} + \alpha \delta \overrightarrow{e}$ - (i) Set $s \leftarrow s'$ - (3) Until $\overrightarrow{\theta}$ converges. ## Experimental setup I #### 20 datasets from the UCI repository. Table 1 Details of the datasets | UCI folder | Inst. | Cls. | Cnt. | Dsc. | MV (%) | |-----------------------------|-------|------|------|------|--------| | audiology | 226 | 24 | 0 | 69 | 2.03 | | breast-cancer | 286 | 2 | 0 | 9 | 0.35 | | breast-cancer-wisconsin | 699 | 2 | 9 | 0 | 0.25 | | chess (kr-vs-kp) | 3196 | 2 | 0 | 36 | 0.00 | | cmc | 1473 | 3 | 2 | 7 | 0.00 | | dermatology | 366 | 6 | 1 | 33 | 0.01 | | ecoli | 336 | 8 | 7 | 0 | 0.00 | | glass | 214 | 7 | 9 | 0 | 0.00 | | heart-disease (hungary) | 294 | 5 | 6 | 7 | 20.46 | | heart-disease (switzerland) | 123 | 5 | 6 | 7 | 17.07 | | hepatitis | 155 | 2 | 6 | 13 | 5.67 | | image | 2310 | 7 | 19 | 0 | 0.00 | | ionosphere | 351 | 2 | 34 | 0 | 0.00 | | iris | 150 | 3 | 4 | 0 | 0.00 | | labor | 57 | 2 | 8 | 8 | 35.75 | | iymphography | 148 | 4 | 3 | 15 | 0.00 | | pima-Indians-diabetes | 768 | 2 | 9 | 0 | 0.00 | | statlog (australian) | 690 | 2 | 6 | 9 | 0.65 | | statlog (german) | 1000 | 2 | 7 | 13 | 0.00 | | statlog (heart) | 270 | 2 | 13 | 0 | 0.00 | Folder in UCI server, number of instances, classes, continuous and discrete attributes, percentage of missing values. ### Experimental setup II - Each dataset is split into 3 disjuntive parts: - $-D_{Tr}$: Training set, 60%. - $-D_{\text{Ev}}$: Evaluation set, 20%. - $-D_{\text{Te}}$: Test set, 20%. ### Experimental setup III - Ensemble production methods based on D_{Tr} (weka): - 100 homogeneous ensembles: - 100 decision trees C4.5 with deafult configuration. - 100 heterogeneous ensembles: - 2 naive Bayes classifiers - 4 decision trees - 32 MLPs (multilayer perceptron) - 32 k-NN - 30 SVMs (support vector machine) - Each type of classifiers have been trained with different sets of parameters. ### Experimental setup IV - Once the ensembles have been generated, they are used to compare the EPRL method against: - Classifier combination metods: - Voting (V) - Multiresponse model tresss (SMT) - Ensemble pruning methods: - Forward selection (FS) - Selective fusion (SF) - The paper describes the parameters that have been used to train these methods. ### Experimental setup V #### • EPRL: - It is executed until the difference in the weights of the ANN between to subsequent episodes becomes less than 10^{-4} . - The performance of the pruned ensemble at the end of the episode is evaluated on D_{Ev} , based on its accuracy using voting. $\stackrel{?}{\leftarrow}$? - − 8: 0.6, reduced by a factor of 0.0001% at each episode - $-\lambda:0.9$ - $\dot{\alpha}$? #### Results and discussion I #### Heterogeneous case Folder in UCI server, accuracy and rank of each method on each of the 20 datasets for the heterogeneous case To compare multiple algorithms on multiple datasets [Demsar] | UCI folder | Accuracy | Accuracy | | | | Rank | Rank | | | | |---------------|----------------|---------------------------|----------------|----------------|-------------------------|-------|-------|-----|-------|-------| | | FS | EPRL | SF | V | SMT | FS | EPRL | SF | V | SMT | | audiology | 77.3 ± 4.0 | 78.0 ± 4 .7 | 77.8 ± 5.9 | 75.9 ± 6.1 | 26.4 ± 5.3 | 3,0 | 1,0 | 2.0 | 4,0 | 5.0 | | breast-cancer | 74.4 ± 4.8 | 73.3 ± 4.6 | 71.6 ± 4.2 | 71.6 ± 4.2 | 66.5 ± 4.7 | 1.0 | 2.0 | 3.5 | 3.5 | 5.0 | | breast-w | 96.3 ± 1.5 | 96.3 ± 1.6 | 96.9 ± 1.8 | 95.0 ± 1.9 | 97.5 ± 2.1 | 3,5 | 3,5 | 2.0 | 5.0 | 1.0 | | cmc | 52.8 ± 2.4 | 53.2 ± 2.7 | 51.6 ± 4.5 | 47.1 ± 2.7 | 45.5 ± 3.6 | 2.0 | 1,0 | 3.0 | 4.0 | 5.0 | | dermatology | 96.6 ± 1.5 | 96.7 ± 1.5 | 96.5 ± 1.0 | 96.4 ± 1.3 | 65.3 ± 2.2 | 2.0 | 1.0 | 3.0 | 4.0 | 5.0 | | ecoli | 83.9 ± 4.3 | 82.8 ± 4.8 | 83.7 ± 5.0 | 82.4 ± 5.2 | 67.2 ± 6.1 | 1,0 | 3.0 | 2.0 | 4.0 | 5.0 | | kr-vs-kp | 99.3 ± 0.3 | 99.2 ± 0.2 | 99.4 ± 0.2 | 98.8 ± 0.5 | 97.6 ± 0.5 | 2.0 | 3.0 | 1.0 | 4.0 | 5.0 | | glass | 68.1 ± 5.7 | 70.2 ± 6.4 | 68.6 ± 5.5 | 68.1 ± 5.5 | 52.1 ± 7.2 | 3,5 | 1.0 | 2.0 | 3.5 | 5.0 | | heart-h | 79.5 ± 5.4 | 79.0 ± 5.7 | 79.9 ± 5.6 | 79.9 ± 5.6 | 80.7 ± 6.3 | 4.0 | 5.0 | 2.5 | 2.5 | 1.0 | | hepatitis | 81.3 ± 5.9 | 81.3 ± 5.9 | 78.1 ± 4.0 | 78.1 ± 4.0 | 81.9 ± 5.9 | 2,5 | 2.5 | 4.5 | 4,5 | 1.0 | | image | 96.6 ± 0.6 | 96.8 ± 0.6 | 97.0 ± 0.5 | 96.2 ± 0.8 | 64.0 ± 1.0 | 3.0 | 2.0 | 1.0 | 4.0 | 5.0 | | ionosphere | 91.6 ± 3.0 | 91.6 ± 3.0 | 90.7 ± 3.3 | 83.4 ± 3.2 | 85.3 ± 3.1 | 1.5 | 1.5 | 3.0 | 5.0 | 4.0 | | iris | 94.7 ± 0.4 | 94.7 ± 0.4 | 95.7 ± 3.3 | 94.0 ± 2.4 | 99.3 ± 1.3 | 3,5 | 3,5 | 2.0 | 5.0 | 1.0 | | labor | 89.1 ± 8.9 | 89.1 ± 8.9 | 94.5 ± 4.5 | 94.5 ± 4.5 | 83.6 ± 7.8 | 3,5 | 3,5 | 1.5 | 1.5 | 5.0 | | lymph | 82.4 ± 4.4 | 80.3 ± 4.3 | 85.5 ± 4.8 | 85.5 ± 4.8 | 78.3 ± 6.1 | 3,0 | 4.0 | 1.5 | 1.5 | 5.0 | | diabetes | 75.2 ± 4.1 | 75.7 ± 3.9 | 67.5 ± 6.1 | 66.5 ± 4.6 | 75.2 ± 4.7 | 2,5 | 1.0 | 4.0 | 5.0 | 2.5 | | credit-a | 85.1 ± 1.5 | 85.5 ± 2.4 | 85.7 ± 2.2 | 83.8 ± 2.3 | 83.6 ± 3.5 | 3,0 | 2.0 | 1.0 | 4.0 | 5.0 | | credit-g | 73.2 ± 2.6 | 74.4 ± 2.2 | 69.0 ± 2.4 | 69.0 ± 2.4 | 69.8 ± 2.6 | 2.0 | 1.0 | 4.5 | 4.5 | 3.0 | | heart-statlog | 82.2 ± 5.6 | 81.9 ± 6.2 | 81.5 ± 4.3 | 81.5 ± 3.5 | 79.1 ± 4.2 | 1.0 | 2.0 | 3.5 | 3.5 | 5.0 | | heart-s | 33.3 ± 9.3 | 32.9 ± 8.6 | 37.5 ± 8.5 | 37.5 ± 8.5 | $\textbf{41.3} \pm 8.4$ | 4,0 | 5,0 | 2.5 | 2.5 | 1.0 | | Average | 80.64 | 80.64 | 80.43 | 79.31 | 72.01 | 2,575 | 2.425 | 2.5 | 3.775 | 3.725 | Simulated 10 times #### Results and discussion II - EPRL shows its strength and its robustness. - Next, Friedman's test: compares the average ranks - H₀: all algorithms are equivalents. - Test F_F based on Friedmans's χ_F^2 statistic - With confidence level p<0.05, the test allows us to reject the H₀. - As H₀ has been rejected, Nemenyi test: - Post-hoc test intended to find the groups of data that differ after a statistical test of multiple comparisons (such as the Friedman test) has rejected the H₀ that the performance of the comparisons on the groups of data is similar. The test makes pair-wise tests of performance. ### Results and discussion III – As H₀ has been rejected: Nemenyi test: **Fig. 3.** Graphical representation of the Nemenyi test for the heterogeneous case. - The algorithms that are not significantly different are connected with a bold line. - There are 3 groups of similar algorithms. ### Results and discussion IV **Table 3**Folder in UCI server and average size of the final ensemble for the heterogeneous case | UCI folder | FS | EPRL | SF | |---------------|------|------|-------| | audiology | 3.9 | 3.5 | 15.6 | | breast-cancer | 3.4 | 6.7 | 100.0 | | breast-w | 2.5 | 3.1 | 64.8 | | cmc | 11.1 | 8.6 | 75.6 | | dermatology | 2.9 | 1.0 | 45.5 | | ecoli | 4.1 | 3.2 | 57.5 | | kr-vs-kp | 4.2 | 3.7 | 42.8 | | glass | 5.0 | 6.9 | 79.6 | | heart-h | 2.1 | 5.2 | 96.9 | | hepatitis | 1.5 | 1.9 | 100.0 | | image | 14.6 | 9.8 | 37.0 | | ionosphere | 1.9 | 3.4 | 51.0 | | iris | 1.0 | 1.0 | 66.6 | | labor | 1.0 | 1.0 | 100.0 | | lymph | 2.1 | 3.8 | 97.0 | | diabetes | 9.4 | 10.1 | 95.7 | | credit-a | 7.1 | 10.6 | 71.1 | | credit-g | 9.2 | 10.4 | 100.0 | | heart-statlog | 9.3 | 6.2 | 74.4 | | heart-s | 3.7 | 9.3 | 100.0 | | Average | 5.0 | 5.47 | 73.55 | 30 of 39 ### Results and discussion V – Average type of models selected for all datasets: Fig. 4. Type of selected models for each algorithm, (a) FS; (b) EPRL; (c) SF. ### Results and discussion VI #### Homogeneous case **Table 4**Folder in UCI server, accuracy and rank of each method on each of the 20 datasets for the homogeneous case | UCI folder | Accuracy | | | Rank | | | | | |---------------|-------------------------|-------------------------|-------------------------|----------------|-------|------|-------|-----| | | FS | EPRL | V | SMT | FS | EPRL | V | SMT | | audiology | 74.7 ± 6.9 | 76.2 ± 3.7 | 76.1 ± 4.0 | 60.2 ± 7.8 | 3.0 | 1.0 | 2.0 | 4.0 | | breast- | 73.9 ± 4.3 | 73.9 ± 4.8 | $\textbf{76.0} \pm 4.1$ | 62.6 ± 4.5 | 2.5 | 2.5 | 1.0 | 4.0 | | cancer | | | | | | | | | | breast-w | 95.5 ± 1.6 | 95.7 ± 1.5 | $\textbf{95.8} \pm 1.1$ | 95.3 ± 1.4 | 3.0 | 2.0 | 1.0 | 4.0 | | cmc | 52.4 ± 3.1 | 52.8 ± 2.5 | $\textbf{53.8} \pm 2.3$ | 44.3 ± 4.6 | 3.0 | 2.0 | 1.0 | 4.0 | | dermatology | 94.2 ± 2.1 | 94.4 ± 2.8 | $\textbf{96.3} \pm 3.3$ | 91.9 ± 2.7 | 3.0 | 2.0 | 1.0 | 4.0 | | ecoli | 83.6 ± 3.7 | $\textbf{85.1} \pm 2.4$ | 84.9 ± 2.3 | 79.7 ± 4.0 | 3.0 | 1.0 | 2.0 | 4.0 | | kr-vs-kp | $\textbf{99.2} \pm 0.3$ | 99.2 ± 0.3 | 99.2 ± 0.3 | 98.8 ± 0.3 | 2.0 | 2.0 | 2.0 | 4.0 | | glass | 68.6 ± 6.3 | 67.1 ± 6.0 | $\textbf{71.0} \pm 6.8$ | 54.3 ± 6.4 | 2.0 | 3.0 | 1.0 | 4.0 | | heart-h | 77.6 ± 3.7 | 78.4 ± 3.2 | 77.9 ± 3.1 | 75.5 ± 4.2 | 3.0 | 1.0 | 2.0 | 4.0 | | hepatitis | 78.4 ± 5.5 | 78.4 ± 7.9 | 79.4 ± 5.2 | 77.4 ± 5.7 | 2.5 | 2.5 | 1.0 | 4.0 | | image | 96.4 ± 0.6 | 96.8 ± 0.8 | 96.8 ± 0.7 | 94.1 ± 1.1 | 3.0 | 1.5 | 1.5 | 4.0 | | ionosphere | 90.6 ± 2.2 | 90.6 ± 2.6 | $\textbf{93.0} \pm 2.4$ | 86.1 ± 3.2 | 2.5 | 2.5 | 1.0 | 4.0 | | iris | 94.3 ± 3.0 | 94.0 ± 2.9 | 96.3 ± 3.1 | 94.7 ± 4.2 | 3.0 | 4.0 | 1.0 | 2.0 | | labor | 72.7 ± 1.1 | 74.5 ± 1.2 | 79.1 ± 1.0 | 54.5 ± 1.1 | 3.0 | 2.0 | 1.0 | 4.0 | | lymph | 75.2 ± 7.0 | 77.6 ± 9.0 | $\textbf{78.3} \pm 9.0$ | 65.9 ± 8.2 | 3.0 | 2.0 | 1.0 | 4.0 | | diabetes | 74.5 ± 3.9 | 75.0 ± 4.2 | 75.3 \pm 4.2 | 67.9 ± 4.4 | 3.0 | 2.0 | 1.0 | 4.0 | | credit-a | 86.7 ± 2.1 | 86.9 ± 2.2 | $\textbf{87.3} \pm 2.3$ | 83.8 ± 3.1 | 3.0 | 2.0 | 1.0 | 4.0 | | credit-g | 73.3 ± 2.2 | 73.6 ± 2.4 | 75.2 \pm 2.3 | 67.7 ± 3.1 | 3.0 | 2.0 | 1.0 | 4.0 | | heart-statlog | 77.2 ± 5.9 | 80.0 ± 5.4 | 81.5 ± 3.7 | 71.9 ± 4.3 | 3.0 | 2.0 | 1.0 | 4.0 | | heart-s | 35.8 ± 7.7 | 41.3 ± 8.0 | $\textbf{42.9} \pm 4.9$ | 35.0 ± 8.5 | 3.0 | 2.0 | 1.0 | 4.0 | | | | г | | | | | | | | Average | 78.7 | 79.6 | 80.8 | 73.1 | 2.825 | 2.05 | 1.225 | 3.9 | #### Results and discussion VII – Nemenyi test: Fig. 5. Graphical representation of the Nemenyi test for the homogeneous case. • EPRL is in the best group of algorithms. ### Results and discussion VIII **Table 5**Folder in UCI server and average size of the final ensemble for the homogeneous case | UCI folder | FS | EPRL | |---------------|------|------| | audiology | 4.8 | 5.5 | | breast-cancer | 4.4 | 7.6 | | breast-w | 4.5 | 9.1 | | cmc | 13.1 | 19.7 | | dermatology | 2.4 | 4.9 | | ecoli | 5.5 | 10.9 | | kr-vs-kp | 2.5 | 3.6 | | glass | 5.9 | 8.2 | | heart-h | 4.9 | 4.1 | | hepatitis | 2.5 | 3.7 | | image | 9.7 | 8.0 | | ionosphere | 3.4 | 5.3 | | iris | 1.1 | 4.1 | | labor | 1.5 | 1.7 | | lymph | 3.5 | 5.8 | | diabetes | 10.1 | 11.4 | | credit-a | 5.7 | 8.7 | | credit-g | 14.7 | 14.7 | | heart-statlog | 6.7 | 9.5 | | heart-s | 6.5 | 12.3 | | Average | 5.67 | 7.94 | 34 of 39 #### Results and discussion IX #### Running times - Times for the "image" dataset. - ¿In which type of machine? **Table 6**Running times of the algorithms for one indicative dataset | FS (min) | EPRL (min) | SF (min) | SMT (min) | |----------|------------|----------|-----------| | 0.21 | 5.35 | 0.16 | 0.48 | ### Anytime pruning I - The proposed approach has the "anytime" property: - It can output a solution at any given time point. - As the ¿ parameter becomes small, the exploration ceases and there is only exploitation, without improve. - It would be desirable that the EPRL continued improving with time: Learning periods. # Anytime pruning II #### Learning period: - It consistfs of a number of episodes. - When the period starts, has a high value, and is decayed over the episodes. - It end when \(\epsilon\) is less than a small threshold. #### • Experimental design: - Heterogeneous and Homogeneous models. - A learning period begins with g=0.6, end with g<0.05 and decays by a factor of 10^{-4} . - An interesting idea. # Anytime pruning III - Four firts periods. - All datasets: **Table 7**Average rank of all algorithms for the heterogeneous case | Period | FS | EPRL | SF | V | SMT | |--------|-------|-------|------|------|-------| | 1 | 2.775 | 2.625 | 2.5 | 3.8 | 3.725 | | 2 | 2.725 | 2.225 | 2.55 | 3.8 | 3.775 | | 3 | 2.8 | 1.95 | 2.7 | 3.85 | 3.775 | | 4 | 2.85 | 1.8 | 2.75 | 3.85 | 3.825 | Table 8 Average rank of all algorithms for the homogeneous case | Period | FS | EPRL | V | SMT | |--------|-----|-------|------|------| | 1 | 2.7 | 2.025 | 1.15 | 3.9 | | 2 | 2.8 | 1.875 | 1.3 | 3.95 | | 3 | 2.8 | 1.875 | 1.3 | 3.95 | | 4 | 2.8 | 1.875 | 1.3 | 3.95 | #### Conclusions - A new method for pruning is proposed. - It get a high predictive performance. - It produces small sized ensembles. - It can output a solution anytime. - Its computational complexity is linear with respect to the ensemble size, but the state space grows exponentially with the number of classifiers. - Running Time is high.