Pruning an ensemble of classifiers via reinforcement learning

Authors: Ioannis Partalas, Grigorios Tsoumakas, Ioannis Vlahavas

Journal: Neurocomputing 72 (2009) 1900-1909

Presentation: Jose Manuel Lopez Guede

Introduction I

- Ensemble: a group of predictive models.
- **Ensemble methods:** production and combination of multiple predictive models.
- Used to increase the accuracy of single models.
- They are a solution to:
 - Scale inductive algorithms to large databases.
 - Learn from multiple physically distributed datasets.
 - Learn from concept-drifting data streams (statistical properties of the objective variable change over the time).

Introduction II

- Ensemble methods phases:
 - (1): Production of the different models
 - Homogeneous: from different executions of the same algorithm (changing parameters) on the same dataset.
 - Heterogeneous: from different algorithm s on the same dataset.
 - (2): Combination of the different models
 - Voting, Weighted voting, etc.
 - Recently (1'5): Ensemble pruning: reduction of the ensemble size prior to the combination for 2 reasons:
 - Efficiency
 - Predictive performance

Introduction III

- Pruning an ensemble is NP-Complete:
 - Exhaustive search: not tractable with a large number of models.
 - Greedy approaches: fast, but may lead to suboptimal solutions.
- This paper:
 - Uses Q-L to approximate an optimal policy of choosing whether to include or exclude each model from the ensemble.
 - Extensive experiments.
 - Statistical tests.

Background I

Reinforcement Learning:

- A problem is specified by a MDP: <S, A, T, R>
 - S: states $S_t \in S_t$
 - A: actions $a_t \in A(s_t)$
 - T: S x A -> S, transition function, new state S_{t+1}
 - R: S -> Real, reward function, $r_{t+1} \in \Re$
 - Maximize the expected return R_t
- Model of optimal behaviour: infinite-horizon discounted model
 - γ , $0 \le \gamma < 1$: discount factor

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}.$$

Background II

- Episodes: subsequences of actions
 - Terminal state: modeled as absorbing state
 - Absorbing state: only an action that leads back to itself.
- $-\pi$: S x A->Real. Policy, $\pi(s,a)$ is the probability of taking the action a in the state s.
- $-V^{\pi}(s)$: State-value function. Expected discounted return if the the agent starts from s and follows the policy π .

$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \middle| s_t = s\right\}$$

Background III

 $-Q^{\pi}(s,a)$: Action-value function. Expected discounted return if the agent starts executing a in state s following the policy π .

$$Q^{\pi}(s, a) = E_{\pi} \{ R_{t} | s_{t} = a, a_{t} = a \}$$

$$= E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \middle| s_{t} = a, a_{t} = a \right\}.$$

 $-\pi^*$: optimal policy, maximizes the state-value $V^{\pi}(s)$ for all states, or the action-value $Q^{\pi}(s,a)$ for all state-action pairs.

Background IV

- To learn the optimal policy:
 - V*: optimal state-value function
 - Q^* : optimal action-value function: expected return of taking action a in state s following the policy π :

$$Q^*(s,a) = E\left\{r_{t+1} + \gamma \max_{a'} Q^*(s_{t+1},a') \middle| s_t = s, a_t = a\right\}$$

– The optimal policy can be defined:

$$\pi^* = arg \max_{a} Q^*(s, a)$$

- Q-L approximated the Q function:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right)$$

Background V

Ensemble methods:

- (1) Producting the models:
 - Homogenous models:
 - Different executions of the same learning algorithm.
 - Different parameters of the learning algorithm.
 - Injecting randomness into the learning algorithm.
 - Methods: Bagging, Boosting.
 - Heterogeneous models:
 - Different learning algorithms on the same dataset.
 - Example: ANN, k-NN

Background VI

- (2) Combining the models:
 - There is no single classifier that performs significantly better in every classification problem.
 - Some domains need high performance: medical, financial, ...
 - Combine different models to overcome individual limitations

Background VII

- "Voting": each model outputs a value, and the value with more votes is the one proposed by the ensemble.
- "Weighted Voting": it is like "Voting", but each model is weighted.

Let x be an instance and m_i , i = 1 ... k a set of models that output a probability distribution $m_i(x, c_j)$ for each class c_j , j = 1 ... n.

Output of the method y(x) for the instance x:

$$y(x) = \arg\max_{c_j} \sum_{i=1}^k w_i m_i(x, c_j)$$

where w_i is the weight of the model i.

Background VIII

• "Stacked generalization"/"Stacking": combines multiple classifiers by learning a meta-level (or level-1) model that learns the correct class based on the decissions of the base-level (or level-0) classifiers.

Related work

- Heuristics to calculate the benefit of adding a classifier to an ensemble.
- Stochastic search in the space if model subsets with a genetic algorithm.
- Pruning using statistical procedures.
- Generation of 1000 models and pruning.
- ...

Our approach I

Problem: pruning an ensemble of classifiers

$$C = \{c_1, c_2, \dots, c_n\}$$

- Ensemble pruning as a RL task:
 - States: pair (C', c_i)

C': current ensemble, subset of C.

 c_i : classifier under evaluation.

State space: $S = P(C) \times C$ P(C): powerset.

Actions: in each state, there are only 2 actions
 (Total: 2n actions).

$$A = \bigcup_{i=1}^{n} \{include(c_i), exclude(c_i)\}.$$

Our approach II

– Episodes:

- The task is modeled as an episodic task
- It starts with an empty set of classifiers $s_0 = (\emptyset, c_1)$
- It lasts n steps.
- At each time step t, the agent chooses to include or not the classifier c_t : $A(s_{t-1}) = \{include(c_t), exclude(c_t)\}$
- End: when the agent arrives at the final state s_n .
- The presentation order of the classifiers is fixed.

Our approach III

Our approach IV

– Rewards:

- Final transition: reward equal to the predictive performance of the ensemble of the final state (intentionally general to be more general).
- Other transitions: 0
- Objective: maximize the performance of the final proned ensemble.

Our approach V

- The proposed algorithm:
 - ¿ –greedy action selection method:

$$a = \begin{cases} \text{a random action with probability } \varepsilon, \\ \arg\max_{a'} Q(s, a') \text{ with probability } 1 - \varepsilon. \end{cases}$$

Our approach VI

Pending idea

– Function approximation methods:

¿weights of the ANN?

- To tackle the problem of large state space.
- Fill the values for every state-action pair in tabular form.
- $Q_t(s, a)$ is a linear function of a parameter vector $\vec{\theta}_t$ (number of parameters equal to the number of features in the state).
 - Training phase: ANN
 - Input: vector with the features of the state. ¿only?
 - Output: estimation of the action value of the state.
 - Feature vector $\overrightarrow{\phi}$:
 - » First n coordinates represent the presence or the absence of a classifier.
 - » The last coordinate represent the classifier that is being tested.

- (1) Initialize $\overrightarrow{\theta}$, $\overrightarrow{e_0} = \overrightarrow{0}$, ϵ and feature vector $\overrightarrow{\phi} = \overrightarrow{0}$
- (2) Repeat (for each episode):
 - (a) $s \leftarrow (\emptyset, c_1)$
 - (b) Estimate $Q(s, include(c_1))$ and $Q(s, exclude(c_1))$
 - (c) For each algorithm c_i
 - (i) $p \leftarrow RandomReal(0, 1)$
 - (ii) If $p < \epsilon$ then (A) $a \leftarrow$ random action
 - (B) $\overrightarrow{e_0} = \overrightarrow{0}$
 - (iii) Else (A) $a \leftarrow \arg \max_{a'} Q(s, a')$
 - (B) $\overrightarrow{e} = \lambda \overrightarrow{e}$
 - (d) $\overrightarrow{e} = \overrightarrow{e} + \phi_s$
 - (e) Estimate $Q(s, a), \forall a \in A(s')$
 - $-Q(s,a) = \sum_{i=1}^{n+1} \theta(i)\phi_s(i)$ (f) $a' \leftarrow \arg\max_a Q_a$
 - (g) $\delta \leftarrow r + \arg\max_{a'} Q_{a'} Q_a$
 - (h) $\overrightarrow{\theta} \leftarrow \overrightarrow{\theta} + \alpha \delta \overrightarrow{e}$
 - (i) Set $s \leftarrow s'$
- (3) Until $\overrightarrow{\theta}$ converges.

Experimental setup I

20 datasets from the UCI repository.

Table 1 Details of the datasets

UCI folder	Inst.	Cls.	Cnt.	Dsc.	MV (%)
audiology	226	24	0	69	2.03
breast-cancer	286	2	0	9	0.35
breast-cancer-wisconsin	699	2	9	0	0.25
chess (kr-vs-kp)	3196	2	0	36	0.00
cmc	1473	3	2	7	0.00
dermatology	366	6	1	33	0.01
ecoli	336	8	7	0	0.00
glass	214	7	9	0	0.00
heart-disease (hungary)	294	5	6	7	20.46
heart-disease (switzerland)	123	5	6	7	17.07
hepatitis	155	2	6	13	5.67
image	2310	7	19	0	0.00
ionosphere	351	2	34	0	0.00
iris	150	3	4	0	0.00
labor	57	2	8	8	35.75
iymphography	148	4	3	15	0.00
pima-Indians-diabetes	768	2	9	0	0.00
statlog (australian)	690	2	6	9	0.65
statlog (german)	1000	2	7	13	0.00
statlog (heart)	270	2	13	0	0.00

Folder in UCI server, number of instances, classes, continuous and discrete attributes, percentage of missing values.

Experimental setup II

- Each dataset is split into 3 disjuntive parts:
 - $-D_{Tr}$: Training set, 60%.
 - $-D_{\text{Ev}}$: Evaluation set, 20%.
 - $-D_{\text{Te}}$: Test set, 20%.

Experimental setup III

- Ensemble production methods based on D_{Tr} (weka):
 - 100 homogeneous ensembles:
 - 100 decision trees C4.5 with deafult configuration.
 - 100 heterogeneous ensembles:
 - 2 naive Bayes classifiers
 - 4 decision trees
 - 32 MLPs (multilayer perceptron)
 - 32 k-NN
 - 30 SVMs (support vector machine)
 - Each type of classifiers have been trained with different sets of parameters.

Experimental setup IV

- Once the ensembles have been generated, they are used to compare the EPRL method against:
 - Classifier combination metods:
 - Voting (V)
 - Multiresponse model tresss (SMT)
 - Ensemble pruning methods:
 - Forward selection (FS)
 - Selective fusion (SF)
 - The paper describes the parameters that have been used to train these methods.

Experimental setup V

• EPRL:

- It is executed until the difference in the weights of the ANN between to subsequent episodes becomes less than 10^{-4} .
- The performance of the pruned ensemble at the end of the episode is evaluated on D_{Ev} , based on its accuracy using voting. $\stackrel{?}{\leftarrow}$?
- − 8: 0.6, reduced by a factor of 0.0001% at each episode
- $-\lambda:0.9$
- $\dot{\alpha}$?

Results and discussion I

Heterogeneous case

Folder in UCI server, accuracy and rank of each method on each of the 20 datasets for the heterogeneous case

To compare multiple algorithms on multiple datasets [Demsar]

UCI folder	Accuracy	Accuracy				Rank	Rank			
	FS	EPRL	SF	V	SMT	FS	EPRL	SF	V	SMT
audiology	77.3 ± 4.0	78.0 ± 4 .7	77.8 ± 5.9	75.9 ± 6.1	26.4 ± 5.3	3,0	1,0	2.0	4,0	5.0
breast-cancer	74.4 ± 4.8	73.3 ± 4.6	71.6 ± 4.2	71.6 ± 4.2	66.5 ± 4.7	1.0	2.0	3.5	3.5	5.0
breast-w	96.3 ± 1.5	96.3 ± 1.6	96.9 ± 1.8	95.0 ± 1.9	97.5 ± 2.1	3,5	3,5	2.0	5.0	1.0
cmc	52.8 ± 2.4	53.2 ± 2.7	51.6 ± 4.5	47.1 ± 2.7	45.5 ± 3.6	2.0	1,0	3.0	4.0	5.0
dermatology	96.6 ± 1.5	96.7 ± 1.5	96.5 ± 1.0	96.4 ± 1.3	65.3 ± 2.2	2.0	1.0	3.0	4.0	5.0
ecoli	83.9 ± 4.3	82.8 ± 4.8	83.7 ± 5.0	82.4 ± 5.2	67.2 ± 6.1	1,0	3.0	2.0	4.0	5.0
kr-vs-kp	99.3 ± 0.3	99.2 ± 0.2	99.4 ± 0.2	98.8 ± 0.5	97.6 ± 0.5	2.0	3.0	1.0	4.0	5.0
glass	68.1 ± 5.7	70.2 ± 6.4	68.6 ± 5.5	68.1 ± 5.5	52.1 ± 7.2	3,5	1.0	2.0	3.5	5.0
heart-h	79.5 ± 5.4	79.0 ± 5.7	79.9 ± 5.6	79.9 ± 5.6	80.7 ± 6.3	4.0	5.0	2.5	2.5	1.0
hepatitis	81.3 ± 5.9	81.3 ± 5.9	78.1 ± 4.0	78.1 ± 4.0	81.9 ± 5.9	2,5	2.5	4.5	4,5	1.0
image	96.6 ± 0.6	96.8 ± 0.6	97.0 ± 0.5	96.2 ± 0.8	64.0 ± 1.0	3.0	2.0	1.0	4.0	5.0
ionosphere	91.6 ± 3.0	91.6 ± 3.0	90.7 ± 3.3	83.4 ± 3.2	85.3 ± 3.1	1.5	1.5	3.0	5.0	4.0
iris	94.7 ± 0.4	94.7 ± 0.4	95.7 ± 3.3	94.0 ± 2.4	99.3 ± 1.3	3,5	3,5	2.0	5.0	1.0
labor	89.1 ± 8.9	89.1 ± 8.9	94.5 ± 4.5	94.5 ± 4.5	83.6 ± 7.8	3,5	3,5	1.5	1.5	5.0
lymph	82.4 ± 4.4	80.3 ± 4.3	85.5 ± 4.8	85.5 ± 4.8	78.3 ± 6.1	3,0	4.0	1.5	1.5	5.0
diabetes	75.2 ± 4.1	75.7 ± 3.9	67.5 ± 6.1	66.5 ± 4.6	75.2 ± 4.7	2,5	1.0	4.0	5.0	2.5
credit-a	85.1 ± 1.5	85.5 ± 2.4	85.7 ± 2.2	83.8 ± 2.3	83.6 ± 3.5	3,0	2.0	1.0	4.0	5.0
credit-g	73.2 ± 2.6	74.4 ± 2.2	69.0 ± 2.4	69.0 ± 2.4	69.8 ± 2.6	2.0	1.0	4.5	4.5	3.0
heart-statlog	82.2 ± 5.6	81.9 ± 6.2	81.5 ± 4.3	81.5 ± 3.5	79.1 ± 4.2	1.0	2.0	3.5	3.5	5.0
heart-s	33.3 ± 9.3	32.9 ± 8.6	37.5 ± 8.5	37.5 ± 8.5	$\textbf{41.3} \pm 8.4$	4,0	5,0	2.5	2.5	1.0
Average	80.64	80.64	80.43	79.31	72.01	2,575	2.425	2.5	3.775	3.725

Simulated 10 times

Results and discussion II

- EPRL shows its strength and its robustness.
- Next, Friedman's test: compares the average ranks
 - H₀: all algorithms are equivalents.
 - Test F_F based on Friedmans's χ_F^2 statistic
 - With confidence level p<0.05, the test allows us to reject the H₀.
- As H₀ has been rejected, Nemenyi test:
 - Post-hoc test intended to find the groups of data that differ after a statistical test of multiple comparisons (such as the Friedman test) has rejected the H₀ that the performance of the comparisons on the groups of data is similar. The test makes pair-wise tests of performance.

Results and discussion III

– As H₀ has been rejected: Nemenyi test:

Fig. 3. Graphical representation of the Nemenyi test for the heterogeneous case.

- The algorithms that are not significantly different are connected with a bold line.
- There are 3 groups of similar algorithms.

Results and discussion IV

Table 3Folder in UCI server and average size of the final ensemble for the heterogeneous case

UCI folder	FS	EPRL	SF
audiology	3.9	3.5	15.6
breast-cancer	3.4	6.7	100.0
breast-w	2.5	3.1	64.8
cmc	11.1	8.6	75.6
dermatology	2.9	1.0	45.5
ecoli	4.1	3.2	57.5
kr-vs-kp	4.2	3.7	42.8
glass	5.0	6.9	79.6
heart-h	2.1	5.2	96.9
hepatitis	1.5	1.9	100.0
image	14.6	9.8	37.0
ionosphere	1.9	3.4	51.0
iris	1.0	1.0	66.6
labor	1.0	1.0	100.0
lymph	2.1	3.8	97.0
diabetes	9.4	10.1	95.7
credit-a	7.1	10.6	71.1
credit-g	9.2	10.4	100.0
heart-statlog	9.3	6.2	74.4
heart-s	3.7	9.3	100.0
Average	5.0	5.47	73.55

30 of 39

Results and discussion V

– Average type of models selected for all datasets:

Fig. 4. Type of selected models for each algorithm, (a) FS; (b) EPRL; (c) SF.

Results and discussion VI

Homogeneous case

Table 4Folder in UCI server, accuracy and rank of each method on each of the 20 datasets for the homogeneous case

UCI folder	Accuracy			Rank				
	FS	EPRL	V	SMT	FS	EPRL	V	SMT
audiology	74.7 ± 6.9	76.2 ± 3.7	76.1 ± 4.0	60.2 ± 7.8	3.0	1.0	2.0	4.0
breast-	73.9 ± 4.3	73.9 ± 4.8	$\textbf{76.0} \pm 4.1$	62.6 ± 4.5	2.5	2.5	1.0	4.0
cancer								
breast-w	95.5 ± 1.6	95.7 ± 1.5	$\textbf{95.8} \pm 1.1$	95.3 ± 1.4	3.0	2.0	1.0	4.0
cmc	52.4 ± 3.1	52.8 ± 2.5	$\textbf{53.8} \pm 2.3$	44.3 ± 4.6	3.0	2.0	1.0	4.0
dermatology	94.2 ± 2.1	94.4 ± 2.8	$\textbf{96.3} \pm 3.3$	91.9 ± 2.7	3.0	2.0	1.0	4.0
ecoli	83.6 ± 3.7	$\textbf{85.1} \pm 2.4$	84.9 ± 2.3	79.7 ± 4.0	3.0	1.0	2.0	4.0
kr-vs-kp	$\textbf{99.2} \pm 0.3$	99.2 ± 0.3	99.2 ± 0.3	98.8 ± 0.3	2.0	2.0	2.0	4.0
glass	68.6 ± 6.3	67.1 ± 6.0	$\textbf{71.0} \pm 6.8$	54.3 ± 6.4	2.0	3.0	1.0	4.0
heart-h	77.6 ± 3.7	78.4 ± 3.2	77.9 ± 3.1	75.5 ± 4.2	3.0	1.0	2.0	4.0
hepatitis	78.4 ± 5.5	78.4 ± 7.9	79.4 ± 5.2	77.4 ± 5.7	2.5	2.5	1.0	4.0
image	96.4 ± 0.6	96.8 ± 0.8	96.8 ± 0.7	94.1 ± 1.1	3.0	1.5	1.5	4.0
ionosphere	90.6 ± 2.2	90.6 ± 2.6	$\textbf{93.0} \pm 2.4$	86.1 ± 3.2	2.5	2.5	1.0	4.0
iris	94.3 ± 3.0	94.0 ± 2.9	96.3 ± 3.1	94.7 ± 4.2	3.0	4.0	1.0	2.0
labor	72.7 ± 1.1	74.5 ± 1.2	79.1 ± 1.0	54.5 ± 1.1	3.0	2.0	1.0	4.0
lymph	75.2 ± 7.0	77.6 ± 9.0	$\textbf{78.3} \pm 9.0$	65.9 ± 8.2	3.0	2.0	1.0	4.0
diabetes	74.5 ± 3.9	75.0 ± 4.2	75.3 \pm 4.2	67.9 ± 4.4	3.0	2.0	1.0	4.0
credit-a	86.7 ± 2.1	86.9 ± 2.2	$\textbf{87.3} \pm 2.3$	83.8 ± 3.1	3.0	2.0	1.0	4.0
credit-g	73.3 ± 2.2	73.6 ± 2.4	75.2 \pm 2.3	67.7 ± 3.1	3.0	2.0	1.0	4.0
heart-statlog	77.2 ± 5.9	80.0 ± 5.4	81.5 ± 3.7	71.9 ± 4.3	3.0	2.0	1.0	4.0
heart-s	35.8 ± 7.7	41.3 ± 8.0	$\textbf{42.9} \pm 4.9$	35.0 ± 8.5	3.0	2.0	1.0	4.0
		г						
Average	78.7	79.6	80.8	73.1	2.825	2.05	1.225	3.9

Results and discussion VII

– Nemenyi test:

Fig. 5. Graphical representation of the Nemenyi test for the homogeneous case.

• EPRL is in the best group of algorithms.

Results and discussion VIII

Table 5Folder in UCI server and average size of the final ensemble for the homogeneous case

UCI folder	FS	EPRL
audiology	4.8	5.5
breast-cancer	4.4	7.6
breast-w	4.5	9.1
cmc	13.1	19.7
dermatology	2.4	4.9
ecoli	5.5	10.9
kr-vs-kp	2.5	3.6
glass	5.9	8.2
heart-h	4.9	4.1
hepatitis	2.5	3.7
image	9.7	8.0
ionosphere	3.4	5.3
iris	1.1	4.1
labor	1.5	1.7
lymph	3.5	5.8
diabetes	10.1	11.4
credit-a	5.7	8.7
credit-g	14.7	14.7
heart-statlog	6.7	9.5
heart-s	6.5	12.3
Average	5.67	7.94

34 of 39

Results and discussion IX

Running times

- Times for the "image" dataset.
- ¿In which type of machine?

Table 6Running times of the algorithms for one indicative dataset

FS (min)	EPRL (min)	SF (min)	SMT (min)
0.21	5.35	0.16	0.48

Anytime pruning I

- The proposed approach has the "anytime" property:
 - It can output a solution at any given time point.
 - As the ¿ parameter becomes small, the exploration ceases and there is only exploitation, without improve.
- It would be desirable that the EPRL continued improving with time: Learning periods.

Anytime pruning II

Learning period:

- It consistfs of a number of episodes.
- When the period starts, has a high value, and is decayed over the episodes.
- It end when \(\epsilon\) is less than a small threshold.

• Experimental design:

- Heterogeneous and Homogeneous models.
- A learning period begins with g=0.6, end with g<0.05 and decays by a factor of 10^{-4} .
- An interesting idea.

Anytime pruning III

- Four firts periods.
- All datasets:

Table 7Average rank of all algorithms for the heterogeneous case

Period	FS	EPRL	SF	V	SMT
1	2.775	2.625	2.5	3.8	3.725
2	2.725	2.225	2.55	3.8	3.775
3	2.8	1.95	2.7	3.85	3.775
4	2.85	1.8	2.75	3.85	3.825

Table 8
Average rank of all algorithms for the homogeneous case

Period	FS	EPRL	V	SMT
1	2.7	2.025	1.15	3.9
2	2.8	1.875	1.3	3.95
3	2.8	1.875	1.3	3.95
4	2.8	1.875	1.3	3.95

Conclusions

- A new method for pruning is proposed.
- It get a high predictive performance.
- It produces small sized ensembles.
- It can output a solution anytime.
- Its computational complexity is linear with respect to the ensemble size, but the state space grows exponentially with the number of classifiers.
- Running Time is high.