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Description

An analytic, computationally feasible maximum likelihood
solution lies in being able to find a parametric form for p(x |θ)
that on the one hand matches the characteristics of the
problem and on the other hand allows a reasonably tractable
solution.
There are distributions for which computationally feasible
solutions can be obtained, and the key to their simplicity lies in
the notion of a sufficient statistic.
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Sufficient Statistics

Sufficient statistic is a (possibly vector-valued) function s of
the samples D that contains all of the information relevant to
estimating some parameter θ .
Definition: A statistic s is said to be sufficient for θ if
p (D | s,θ) is independent of θ .
If we think of θ as a random variable, we can write:
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Sufficient Statistics

It becomes evident that if , s is sufficient for θ .
Conversely, if s is a statistic for which and if

, then is independent of θ .
For a Gaussian distribution, the sample mean and covariance,
together, represent a sufficient statistic for the true mean and
covariance;
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Factorization Theorem

It states that s is sufficient for θ if and only if p (D | θ) can be
factored into the product of two functions, one depending only
on s and θ , and the other depending only on the training
samples.
It allows us to shift from the complicated density p (D | s,θ) ,
used to define a sufficient statistic, to the simpler function:

Characteristics of a sufficient statistic are completely
determined by the density p(x |θ), and have nothing to do with
a choice of an a priori density p(θ).
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Factorization Theorem

The ability to factor p (D | θ) into a product g (s,θ)h (D) is
interesting only when the function g and the sufficient statistic
s are simple.
If s is a sufficient statistic for θ , this does not necessarily imply
that their corresponding components are sufficient, i.e., that s1
is sufficient for θ1, or s2 for θ2, and so on.
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Kernel Density

The factoring of p (D | θ) into g (s,θ)h (D) is not unique.

If f (s) is any function of s, then and
h� (D) = h (D)/f (s) are equivalent factors.
This kind of ambiguity can be eliminated by defining the
kernel density:

which is invariant to this kind of scaling.
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What for?

What is the importance of sufficient statistics and kernel
densities for parameter estimation?

For any clasification rule, we can find another based solely on
sufficient statistics that has equal or better performance.
Data reduction: we can reduce an extremely large dataset
down to a few numbers (sufficient statistics) confident that all
relevant information has been preserved.
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Estimators

Bayes:
We can always create the Bayes classifier from sufficient
statistics.
Our Bayes classifiers for Gaussian distributions were functions
solely of the sufficient statistics, estimates of µ and ∑.

Maximum likelihood:
When searching for a value of θ that maximizes
p (D | θ) = g (s,θ)h (D), we can restrict our attention to
g (s,θ).
In this case, the normalization provided by kernel density is of
no particular value unless ḡ (s,θ) is simpler than g (s,θ).
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Kernel Density

Significance of the kernel density is revealed in the Bayesian
case.
If we substitute p (D | θ) = g (s,θ)h (D) in Eq. 51, we obtain:

If prior knowledge of θ is very vague, p (θ) will tend to be
uniform, or changing very slowly as a function of θ .
For a uniform p (θ), p (θ | D) is approximately the same as the
kernel density.
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Kernel Density

The kernel density is the posterior distribution of the
parameter vector when the prior distribution is uniform.
When the a priori distribution is far from uniform, the
kernel density typically gives the asymptotic distribution
of the parameter vector.
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Factorization Theorem

To see how the Factorization Theorem can be used to obtain
sufficient statistics, consider a familiar d -dimensional normal
case with fixed covariance but unknown mean:
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Sufficient Statistics for Exponential Family
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Distributions, Sufficient Statistics and Unnormalized Kernels
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Two Issues

There are two issues that must be confronted:
How classification accuracy depends upon the dimensionality
(and amount of training data).
Computational complexity of designing the classifier.
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Accuracy, Dimension and Training Sample Size

Consider the two-class multivariate normal case with the same
covariance where j = 1,2. If the a priori
probabilities are equal, then Bayes error rate is:

This shows how each feature contributes to reducing the
probability of error.
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Useful Features

Most useful features are the ones for which the difference
between the means is large relative to the standard deviations.
No feature is useless if its means for the two classes differ.
A way to reduce the error rate further is to introduce new,
independent features.
Although increasing the number of features increases the cost
and complexity of both the feature extractor and the classifier,
it is often reasonable to believe that the performance will
improve.
In practice, beyond a certain point, the inclusion of additional
features leads to worse rather than better performance.
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Order of a Function

f (x) is “of the order of h(x)” - written f(x) = O(h(x))” - if
there exist constants c0 and x0 such that | f (x) |≤ c0 | h (x) |
for all x > x0 .
This means that for sufficiently large x , an upper bound on the
function grows no worse than h(x).
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Computational complexity of an algorithm

We are generally interested in the number of basic
mathematical operations (additions, multiplications and
divisions) it requires, or in the time and memory needed on a
computer.
To illustrare this concept, we consider the complexity of a
maximum likelihood estimation of the parameters in a classifier
for Gaussian priors in d dimensions, with n training samples for
each of c categories.
For each category it is necessary to calculate the discriminant
function of:
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Computational complexity of an algorithm

We assume that n > d (otherwise our covariance matrix will
not have a well defined inverse).
For large problems, the overall complexity of calculating an
individual discriminant function is dominated by the O(d2n)
term.
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Estimating the covariance matrix

This requires the estimation of d(d +1)/2 parameters:
d diagonal elements.
d(d−1)/2 independent off-diagonal elements.

Maximum likelihood estimate:

is the sum of n−1 independent d - by - d matrices of rank
one, and thus is guaranteed to be singular if n ≤ d .
Since we must invert �∑ to obtain the discriminant functions,
we have an algebraic requirement for at least d +1 samples.
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Computational complexity for classification

Computational complexity for classification is less.
Given a test point x we must compute (x−µ̂), an O(d)
calculation.
For each of the categories, we must multiply the inverse
covariance matrix by the separation vector, an O(d2)
calculation.
The maxigi (x) decision is a separate O(c) operation. For
small c then, recall is an O(d2) operation.
Recall is much simpler (and faster) than learning.
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Space and Time Complexities

For instance, the sample mean of a category could be
calculated with d separate processors, each adding n sample
values.
We can describe it as:

O(d) in space
O(n) in time

For any particular algorithm, there may be a number of
time-space tradeoffs, for instance using a single processor many
times, or using many processors in parallel for a shorter time.
Such tradeoffs are important considerations.
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Qualitative Distinctions

Distinction is made between polynomially complex and
exponentially complex algorithms - O(ak) for some constant a

and aspect or variable k of the problem.
Exponential algorithms are generally so complex that for
reasonable size cases we avoid them altogether, and
approximate solutions that can be found by polynomially
complex algorithms.
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Overfitting

Number of available samples is inadequate, and the question
of how to proceed arises.
Possibilities:

To reduce the dimensionality by:
redesigning the feature extractor,
selecting an appropriate subset of the existing features,
combining the existing features in some way.

To assume that all c classes share the same covariance matrix,
and to pool the available data.
To look for a better estimate for ∑.
To assume statistical independence
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Paradox

The classifier that results from assuming independence is
almost certainly suboptimal.
It will perform better if it happens that the features actually
are independent.
But... how can it provide better performance when this
assumption is untrue?
The answer again involves the problem of insufficient data,
and some insight into its nature can be gained from
considering an analogous problem in curve fitting.
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Curve Fitting
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Improving generalization

We might consider beginning with a high-order polynomial
(e.g., 10th order), and successively smoothing or simplifying
our model by eliminating the highest-order terms.
Heuristic methods that can be applied in the Gaussian
classifier case.

We wish to design a classifier for distributions N(µ1,∑1) and
N(µ2,∑2) and we have insufficient data for accurately
estimating the parameters.
We might make the simplification that they have the same
covariance, i.e., N(µ1,∑) and N(µ2,∑), and estimate ∑
accordingly (such estimation requires proper normalization of
the data).
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Improving generalization II

Intermediate approach: to assume a weighted combination of
the equal and individual covariances, (known as shrinkage or
regularized discriminant analysis) since the individual
covariances “shrink” toward a common one.
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